Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 1 of 59

EXHIBIT O

374

eyt
A
|

TIDIGITAL RESEARCH

l'_{‘.’ i

375

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 2 of 59

Post Ofiice Box 579, Pacific Grove, California 93850, (408) 373-3403

CP/M Interface Guide

Copyright @ Digital Research
1975, 1976

(rr——
LA S
EXHIBIT NG, 5 _

/= 8~0
C. HAMMEz.Z

376

TABLE OF CONTENTS

INTRODUCTION« . . .+
1.1 CP/M Organization . .,
1.2 Operation of Transient Programs

1.3 Operating System Facilities .

BASIC 1/0 FACILITIES ¢« « -« .+ o o . .
2.1 Direct and Buffered 1I/0

2.2 A Simple Example

DISK I/0 FACILITIES . . .« « v o . .
3.1 File System Organization . .
3.2 File Control Block Format . .
3.3 Disk Access Primitives

3.4 Random ACCESS . + « o

SYSTEM. GENERATION . .« . +« v « . . .

4.1 TInitializing CP/M from an Existing Diskette

CP/M ENTRY POINT SUMMARY

ADDRESS ASSIGNMENTS

SAMPLE PROGRAMS + +« & ¢+ « ¢ 4 4 ¢ 2 o « &

ii

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 3 of 59

10
12

18

18

19

20

22

23

.

C;ase 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 4 of 59

I 3

CP/M INTERFACE GUIDE

1. INTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
peripheral and disk I/0 facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/0 system for serial peripheral control
BDOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-
mon entry point and referred to as the FDOS. The CCP is a dis-
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections)}, including user defined inter-—
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains.the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

i Transient programs (system functions and user-defined programs)
E are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

<command>
<command> <filename>

“command> <filename> <filetype>

377

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 5 of 59 _

Figure 1. CP/M Memory Organization
fbase: FDOS
cbase: ccp
TPA
H‘\\
I
tbase: .
. System Parameters
boot: - 'TTTTI1T]

address field of jump is fbase

entry: the principal entry point to FDOS is at location 0005
which contains a JMP to fbase. The address field at
location 0006 can be used to determine the size of
available memory, assuming the CCP is being overlayed.

Note: The exact addreséés for boot, tbase, cbase, fbase,

and entry vary with the CB/M version (see
Section 6. for version correspondence).

378

379

:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 6 of 59

iere <command> is either a built-in command (e.g., DIR or TYPE),
r the name of a transient command or program. If the <command>
i a built—-in function of CP/M, it is executed immediately; other-
wise the CCP searches the currently addressed disk for a file

by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at thase,
and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>.<filetype>, then the CCP prepares a file control-
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FDOS, and
is given in detail in Section 3.2. :

The program then executes, perhaps using the I/0 facilities
of the FDOS. If the program uses no FDOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system

must be reloaded upon the transient's completion. This system

reload is accomplished by a direct branch to location “boot" in

memory. :

The transient uses the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/0 system is accessed by passing
a "function number" and an "information address" to CP/M through
the address marked "entry" in Figure 1. 1In the case of a disk
read, for example, the transient program sends the number corres—
ponding to a disk read,’ along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk

'~ operation was unsuccessful. The function numbers and error in-

dicators are given in detail in Section 3.3.
1.3 Operating System Facilities

CpP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:**

* Address "entry" contains a jump to the lowest address in the
FDOS, and thus "entry+l" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-
ponds exactly to Intel's peripheral definition, including I/0
port assignment and status byte format (see the Intel manual
which discusses the Intellec MDS hardware environment}).

‘*l.x

380

Case 2'05‘9}‘_'“1 L19. 157 Document 14-10 Filed 03/15/07 Page 7 of 59

read Console Character
Write Console Character
Read Reader Character

Write Punch Character

Write List Device Charactexr
Set I/0 Status

Interrogate Device Status
print Console Buffer

Read Console Buffer
Interrogate Console Status

The exact detajls of BIOS access are given in Section 2. The BDOS

Primitives include the following operations:

pisk System Reset

Drive Select

File Creation

File Open

File Close

pirectory Search

File Delete

File Rename

read Record

write Record

Interrogate Available Disks
Tnterrogate Selected Disk
. get DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/0 FACILITIES

Access to common péripherals is accomplished by passing a

function pumber and information address to the BIOS. In general,

the function number is passed in Register C, while the informa-
Note that this

tion address is passed in Register pair D,E. :
ventions for parameter passing, and thus

Sonforms to the PL/M.Con
the following pi/M procedure is sufficient to link to the BIOS
When a value is returned:

DECLARE ENTRY LITERALLY '0005H'; /* MONITOR ENTRY */

PROCEDURE (FUNC, INFO) BYTE;
DECLARE FUNC BYTE, INFO ADDRESS;

G0 TO ENTRY:

MONZ2:

END MONZ;

£.2:05:cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 8 of 59

MON1l: PROCEDURE (FUNC,INFO);
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY:
END MON1

if no returned value is expected.

2.1 Direct and Buffered 1/0.

The BIOS entry points are given in Table I. In the case of
simple character I/0 to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char-
acter positions. The I/0 status byte takes the form shown in
Table I, and can be programmatically interrxogated or changed.

The buffered read operation takes advantage of the CP/M line edit-
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number
of characters read from the console after the operation (not
including the terminating carriage-return). The remaining posi-
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper-
ation are given below:

break —~ line delete and transmit

rubout - delete last character typed, and echo

control-C sysitem rebout

control-U —.delete entire line

return carriage, but do not transmit
buffer (physical carriage return)

control-E
<cr> — transmit buffer

The read routine.also detects control character sequences other
than those shown above, and echos them with a preceding "t"
symbol. The print entry point alXlows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "“$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order: -

[e 9 of 59
Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Pag ‘
a :05-

T
.

PRINTCHAR. PROCEDURE (B);
/* SEND THE ASCIT CHARACTER B TO THE CONSOLE ¥/
DECLARE B pyry.
1 _ CALL MON] (2. B) ;
. END PRINTCHAR,

CRLF, PROCEDURE :

/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (0DH) ; carLL PRINTCHAR (0AH) ;
RLF;

PRINT. PROCEDURE {a):
* PRINT THE myppgg STARTING AT ADDRESS A */
DECLARE p ADDRESS ;
CALL MON1(9,),
END PRINT;

DECLARE RDBUFF'(IBO) BYTE;
'READ-

* PROCEDURE ;

/* READ CONSOLE cHARAGTERS INTO 'RDBUFF' */

RDBUFF=128; /« FIRST BYTE SET TO BUFFER LENGTH */

CALL MONl(lO,_RDBUFF);

END READ; ~_“
DECLARE BYTE; |
CALL crip,

CALL PRINT (.'TYPE INPUT LINES $');
. DO WHILE 1; /% INFINITE LOOP~UNTIL CONTROL-C */
CALL CRLF; caryp, PRINICHAR ('*'); /% PROMPT WITH '** %/
CALL READ; 1 RDBUFF (1) ;
DO WHILE (I:= 1 -1) > 255;

CALL PRINTCHAR (RDBUFF (I+2)) ;
END ‘ .

The SXecution of this Program might proceed as follows:

TYPE INPUT LINES
*HELLO :

- OLLEH
*WALT, WALLA WASH 7
HSAW ALLAW ALLAW
*MOM WOW) :
WOW MoMm ;
*to {system reboot)

1.

TABLE T

BASIC I/0 OPERATIONS

-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 10 of 59

N
‘@

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Console None: ASCII Character I = MON2{1,0)
1
Write Console ASCII Character None CALL MONL1(2, 'A'")
5 . _
Read Reader None ASCII Character I = MONZ2(3,0)
3
Write Punch ASCII character None CALI, MON1(4, *B'}
4
Write List ASCII Character None CALL MONL({(S,‘C')
5
Get I/0 Status None I/0 Status Byte IOSTAT=MON2 (7,0}
7
Set 1/0 Status I/0 Status Byte None CALL MON1 (8, TOSTAT)
8
Print Buffer Address of None CALL MONL(9, .'PRINT
9 string termi- THIS $')
' nated by °'$’

383

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 11 of 59

s
e
e

TABLE I (continued)

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL %;
Read Buffer Address of ' Read buffer is CALL MON1 (10,
10 Read Buffer* . filled to maxi- .RDBUFF) ;
mum length with
console charac-—
(See Noteq) ters
Interrcgate None Byte value with I = MON2{11,0)
Console Ready least signifi-
11 cant bit = 1
(true) if con-
‘ sole character
is ready

Note,: Read buffer is a sequence of memory locations of the form:
m| k ciicz c3 Cy
. 1_current buffer length
Maximun buffer length
Note, : The I/0 status byte is defined as three fields A,B,C, and D
: 2b 2b.2b 2b
[A]BiciDj
MSB LSB
requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows: '
0 TTY 0 TTY 0 TTY o TTY
D = 1 CRT cC = 1. FAST READER B = j 1 FAST PUNCH A =} 1 CRT
Console 2 BATCH[Reader)2 - Punch \ 2 - List} 2 -
3 - - 3 - 3 -

\.,I,/ S

385

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 12 of 59

4

3. DISK 1/0 FACILITIES

The BDOS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named file structure on each diskette, pro-
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a complete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename~
which can be from one to eight alphanumeric characters, and the
<filetype> which consists of zero through three alphanumeric
characters. The <filetype> names the generic category of a par-
ticular file, while the <filename™> distinguishes a particular
file within the category. The <filetype®s listed below give
some generic categories which have been established, although

_they are generally arbitrary:

ASM assembler source file
PRN assembler listing file

HEX assembler or PL/M machine code
in "hex" format

BAS BASIC Source file
INT BASIC Intermediate file

COM Memory image file (i.e., “Command"
file for transients, produced by LOAD)

BAK Backup file produced by editor
{see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name
X.ASM

is interpreted as an assembly language source file by the CCPp
with <filename> X.

The files in CP/M are organized as a logically contiguous se-
gquence of 128 byte records (although the records may not be phys-
ically contiguous on the diskette), which are normally read or
written in sequential order. Random access is allowed under cP/M

. however, as described in Section 3.4. No particular format with-

in records is assumed by CP/M, although some transients expect
particular formats:

386

file control block (FCB) which provides name and allocation

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 13 of 5

(1) Sourxce files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return-—
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for-
mat, although the loader does not require
the carriage-return-line-feed characters.
End of text is given by the character con-
trol-z, or real end-of-file returned by
CP/M.

and

(2) COM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is not
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 File Control Block Format
Each file being accessed through CP/M has a correasponding

information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the WR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up to 15 addi-
tional extensions of the f£ile can be addressed. Thus, each FCB
can potentially describe files up to 256K bytes (which is slightly
larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro-
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs an FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename™ or <filename>.<fi1etype> com—
bination. BAny field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfchb (see Section &),
with an assumed I/0 buffer at tbuff. The transient can use tfcb
as an address in subsequent input or output operations on this
file.

387

2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 14 of 59

10a

In additien to the default fcb which is set-up at address tfch, the
ccp also constructs a second default fcb at address tfcb+ 16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.ZOT Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at tfcb

is initialized to the filename X with filetype ZOT. Since the user typed

a second file name, the 16 byte area beginning at tfch + 16;4 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this second filename and filetype to ancther area
{usually a separate file control block) before opening the file which
begins at tbase, since the open operation will fill the disk map portion,
thus overwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H). If
one file name was specified, then the field at ‘tfck + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
..., contain the remaining characters up to, but not including, the
carriage return. Given that the above command has been typed at
the console, the area beginning at tbuff is set up as follows:

tbuff:
+0 41 +2 43 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

12 B X . Z O T ¥ Y . Z A P ? ? ?

where 12 is the number of valid characters (in binary), and ¥ represents
an ASCII blank. Characters are given in ASCII upper case, with un-
initialized memory following the last valid charactex.

Again, it is the responsibility of the program to extract the infor-
mation from this buffer before any file operations are performed since
the FDOS uses the tbuff area to perform directory functions.

In a standard CP/M system, the following values are assumed:

boot: 000CH “bootstrap load {warm start)
entry: OOO5H entry point to FDOS

tfchb: 005CH first default file codntrol block
tfcb+1le 0O06CH second file name .

tbuff 0080H default buffer address

tbase: ©OI100H base of transient area

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 15 of 59

Figure 2. File Control Block Format
0 123 4567 8 910111213141516171819.. ...2728 29303132
—_—— —
ET FN FT EX RC DM NR
FIELD FCB POSITICNS PURPOSE
ET 0 Entry type (currently not used,
but assumed zero)
FN 1-8 File name, padded with ASCII
blanks
FT 9-11 File type, padded with ASCII
blanks
EX 12 File extent, normally set to - .
zZero ' F‘)
13-14 Not used, but assumed zero
RC 15 Record count is current extent

Ssize (0 to 128 records)

DM 16-31 Disk allocation map, filled-in
and used by CP/M
" NR .32. Next record number to read or
write:

Ca -CV-
. se 2:05-cv-01719-TSZ .Document 14-10 Filed 03/15/07 Page 16 of 59

12

Disk Access Primitives

Given that a program has properly initialized the FCB's for
of its files, there are several operations which can be per-
as shown in Table Il. in each case, the operation 1is

o the currently selected disk (see the disk select oper-
stion in Table 11), using the file information in a specific FCB:
the following pPL/M program segment, for example, copies the con-
tents of the file X.Y to the (new) file NEW.FIL:

DECLARE RET BYTE:

OPEN: PROCEDURE (R)
DECLARE A ADDRESS:
RET=MON2 {15,A) ;
END OPEN;

CLOSE: PROCEDURE (A);
DECLARE A ADDRESS:
RET=MON2 (16,3} ;
END;

MAKE : PROCEDURE (B)
DECLARE A ADDRESS:
RET=MON2Z {22,A) ;
END MAKE;

y DELETE: PROCEDURE {B);

J DECLARE A ADDRESS:

' /* IGNORE RETURNED VALUE */
CALL MON1(19,RA);

END DELETE;

READBF: PROCEDURE (A);
DECLARE A ADDRESS;
RET=MON2Z (20, A) ;
END READBF;

WRITEBF: PROCEDURE (a);
DECLARE A ADDRESS;
RET=MON2(21,3); -
END WRITEBF;

INIT: PROCEDURE ;
CALL MON1(13,0);
END INIT;

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCBL1 (33) BYTE
TNITIAL (0,'X vy ',0,0,0,0),
FCB2 (33) BYTE -
eé) INTTIAL (O, ‘NEW ', 'FIL',0,0,0,0};

e T A

390

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 17 of 59

CALL INIT:;)
/* ERASE 'NEW.FIL' IF IT EXISTS %/
CALL DELETE (.FCB2):;
/* CREATE''NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (.FCB2):
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE $');
ELSE
DO; - /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCB1);:
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $'):
ELSE
DO; /* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTH FILES */
FCB1(32), FCB2(32) = 0;
/* READ FILE X.Y UNTIL EOF OR ERROR */
CALL READBF (.FCBl); /*READ TO 80H*/
DO WHILE RET = 0;
CALL WRITEBF (.FCB2) /*WRITE FROM 80H*/
IF RET = 0 TBEN /*GET ANOTHER RECORD*/
CALL READBF (.FCBl): ELSE
CALL PRINT (.'DISK WRITE ERROR $');
END;
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $');
ELSE ’
DO; CALL CLOSE (.FCB2):
IF RET = 255 THEN CALL PRINT (.'CLOSE ERRORS'):
END;
END; G
END; : : W/
EOF

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. " 1In
both cases, the first 16 bytes are initialized to the <filename>
and <filetype> of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". IFf file
creation is successful, the input file "X.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/O operations.
The first call to READBF fills the (implied) DMA buffer at 80H
with the first record from X.Y. The loop which follows copies
the record at 80H to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.Y. This transfer operation con-
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it is reported; other-
wige the new file is closéd and the program halts.

A

quasaxd)
30U 3T 6GZ I0 ‘€04 _ pauado
ay3 o3 buipuodsex I0 pejlwsio ATSnoTra 9T
- I0D AIjue AJIOJDDIATP -axd ueaq seY UOTUYA
(dDI*’9T)CNOW = I sy3 FO ss=appe 934d €04 u®e JO 882IPPY ®TTI 2S0OTD
‘sogd ®u3l Aq
a9s sJIe s$33Aq WA =YL
cquassad zou 3TTF
JT §6Z IC ‘punog IT possadoe cT
4103083 TP Y3 UT €Dd eq 03 BTTF oYyl I03
(04 ‘ST)ZNOW = I Y3 o SseIppe 9344 g0d 8yl 3O SS8IppyY : ®1T3 u=sdgQ
suotyersdo STTF b
juenbassqns 107 po3l 029 ‘7=D ‘T=9 '0=Y
(,g, MsTp ut-5oT) -09T8S pue ,BUTT~-UO, tuT-HOT 03 YSTP X
poxopTISuUcO ST X ISTA ayy 03 butpucdssx ASTP JOOT°S
(T*PT) TNOW TI¥O suoN ~J00 BnTea I9bojuTl uvy . pur ur-bor
WOUTT €T

Ho8 ©O3

-330, POI9PTSUOD BIB _
S591PPE (YWA 198

szsyzo TTE OTTUM ,UT

-pabboT, 5T ¥ ASTP . . n¥u
aey3 ST 309I3® SPTIS _ MSTP 3IDSTSS PuUB
(0ET) INOW TIVOD SUON - ®UON sodg ©2TTRI3ITUI
BATIP JUBIIND _ _
wory Pe313FTT ST PESH et , !
(04271) ZNOW TTH¥O QuoN DUON pesH 3311 :
TIY0 TYOIdAL JOIVA DHZMDB@M SYALINTIVd AYLNE ¥IGWAN/NOILONNI

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 18 of 59

SEAILIWI¥G SSIDOVY ¥MSId

II IV

o e

391

’gzT SP®2OX® PISTI ¥N 8y3 II
. 8Yy3 3O PTISTF UN Syl

‘zeYylaIng {9z uUOTIIOUNIF 29%)
ssoTun se3iq gzT 3IXSU YUY I0F H(QE SSOIPpe wWoII/03

r@ﬂ

*0X8Z 03 38S9X ST PISTF ¥N Sy3 pue ‘ATTedTivwoane psusdo ST U1 XU ayl
‘uorjexsdo 8yl ad3Fe pejudwWeIOUT ATTEOTIRWOINR ST €DJ
psI93Te Ussq sey SS2Ippe YWd syl
elEP IDFSURIY SUOTIEILdO Q/I BYL "ﬁmuoz

(€23 /0Z) ZNOW =

gsooow

wopueX Ul B1RP
usiaTamun Hurtpeex = g
STTF

30 pu® 3sud pesx
pesax Tnysssoons

0
O~

it

hﬂwuoq 89s) peex o3
pIoDsT 3xXdU DY} 03

328 YN U3ITH ‘9TTF
PONEJO ATTnIsssoons
® JO €D4 FO SSIIPPY.

0c¢

pIooay 3XsN pesy

(20d°'6T) ZNOW =

SUON

9339A5TP

UoXI sasTsp 03 oTIZ
J0 <odA3sTT3> pue
<sureusTIIF> buture:y
-U00 g0d IO SSS8Ippy

61
3TTI d©3I0TQ

(824" ‘8T) ZNOW

JX8Uu JO SS3ippe 23148g

(poMOTT® mHHmo.

50Q€ ®3RTPOUWISIUT

I8Y30 _ou) [T UOTI
-ouny I833je paITed
Ing ‘SA0Je s sueg

81
QOULIINDOO0
31X3U IO Yoxess

(22&°7LT) ZNOW

"UYO3PW OU SS3EDTPUT
GGz -8sTMasyzo ! Aue
FT ‘404 3ndur ssyl3ew
JeUl AI03093TP UT g04
18ITI JO ssaappe =23ig

* I9730RIRYD

Aue ssyoaew gd4 UT
wéy IIOSY *Ydjeuw
03 <8dA3eTII> pue

<2WRUSTTI> buTuTes

-uod g04J 3O S83appy

LT
9TT3 XTO0F YyoIwss

TIVO TUYOIdAL

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 19 of 59

qOTYA CEINEOLEE

\

SYHIANYIVE X3INA

AATWAN/NOTIONNI

(ponuUT3UOD)

II H719YL

392

91

1 8uo pue
peopuedxa

sqUuUS3Xe TRUOTITPPE yoes IO
s1e oIaYl : 30N

1 Kzjue U0 a12ym ‘ (S9TIFUS ggz o3

fop)

e ‘2113 Kxewtxd ay3x 103 peoatnbax S

M sq ued) °9IADASTP toed uo sTqelTeAR SVTIFUD k10300ITp b9 ATTewIod

(qV]

)

(@)

©

o

m “eyogjew ou IT GST

© pexsiTe 5T <443

o) ~-2TTI3 > puecaueudTTI> so1kq 9T puodsSs

o syr ‘'s93Aq 91 uT Id pue NI mdU

D 48173 oy3 SoyoIeRw pue ‘so3kq 9T ASITI €2

i yoTuM AI3us Kxoao? ut ILd PU® N& PIO

- (20 '€ 7) TNOW = I -ITp °U3 39 sS9aPPY yata €54 30 s82IpPPY god eweusy

i

3 ' kadwe o3 pezTIRTATUL

I= oTqeITRAR ST gords st 9173 °U3 tpoie,

m Azo3oaITp ou FT 66T _a30 sT Kx3jue K103

S 10 ‘goi @24yl 03 pel -021Td ‘39S <odka . 7z

S - _eooTTe Ax3ue KAx0309® -397T3> puU® <oureuaTTI>

) (g0d" ‘TZ)TNOR = 1 _11p 3O Ss°Ippe °3Ad Y3TA €D JO SSIIPPY oTTd BYENW

N _ :

)

H Ammuoc 298)

it ooeds K31030®

~ ~-ITp 8Iow ou = 66T

Q@ plep XSTP 30 PuUd = 2

3 a1ty bHut o3TIm O3 prodal . 17

D -pu®3IxXe Uy 10118 = 1 axsu ay3 o3 39S ST aIN . ,

o (@od" ‘Tz) ZNOW = I 93 TIM TNFSSIVONS = 0 adeoxa ‘oaode S® awes propey F¥eN 23 TIM

(qV] .

U .
gATYA QENENLEE SYATIWYIYd XMILNE mmmEDZ\ZOHBUZDh

1Ty TYOIdAD

(ponut3juod) Il qI1gYdh

.
1%@

\—rl/
T S etk i

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 21 of 59

1(0’SzZIZNOR = I

EeN
=,

uotyexsdo ASTP IXSU BUI IOF
pasn aq TTTA UDTYM DATAR
ay3 ‘*°8°T) ASTP. PebBOT
AT3uexano o Jequmu XSTd

QUON

14
Tequmu

BATIQ 33eborxsiunl

Y (Q'LZ)ENOR = ¥

fs8mIaavy
{*°*)TENATO0Nd ENOW

(puew

-wod SAIVLS Aqpesn)
MSTP JIUSIAND BYj

I0F JIO3D8A uoT3ed
-0TT® ®Y3} JO SSVIPPY

UGN

Le

UQTIBOOTTV
saeboixequl

(HO00Z‘92) INOW TI¥D

Kxowsur

UT Ssaxppe POTITO
-ads 3¢ ooe1d soyel
O/I ¥sTPp 3uenbasqng
SUuoN

xa3INng YA
934Aq 8ZT IO SS8IDPPY

. 92 .
SS9IpPPe YWA 398

(0P Z)ZNOW = I

WY ¥STP o3 butpuod
~-SOXI00 3T JUEDTT
-TubTs 3Isesl UITA
smvﬁm-ﬂ@ :ma.oﬁtﬁ co [

70 suotatsod 3Tq UT
Ty U3TA SnTes 9344

SUON

ve

I03D9A UT
-bo1 o3eboaasqur

TIVD TVYII4AL

| EATIVA 4INEOALEY

SYALAWRE Y AU LRI

YAGWNN/NOILONNA

(pONUTIUOD)

II &I9¥d

394

“ 395

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 22 of 59

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file. Random access within the first 16K seg-
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/0 takes place.
Note, however, that if the 128th record is written, then the -
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. In this case, the program must
explicitly decrement the EX field and re—open the previous extent.
I1f random access outside the first 16K segment is necessary.
then the extent number e be explicitly computed, given an absol-
ute record number T as

e = L_E_

128

SHR(r,7)

or eguivalently,

il

e

this extent number is then placed in the EX field before the seg—
ment is opened. The NR value n is then computed as

r mod 128

o]
i

or
@' n = r AND 7FH.

When the programmer expects considerable cross—segment accesses,
it may save time to create an FCB for each of the 16K segments,
open all segments for access, and compute the relevant FCB from
the absolute record number Xr.

4. SYSTEM GENERATION .

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, Cy «-vr since the CP/M
system is loaded only from drive A.

The cp/M file system is organized so that an IBM-compatible diskette
£rom the factory (or from a vendor which claims IBM compatibility) looks
1jike a diskette with an empty directory. Thus, the user must first cCopy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.. .

'\-u..l’

396

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 23 of 59

NOTE: before you begin the CP/M copy operation, read your Licensing
Agreement. It gives your exact. legal obligations when making reproductions
of CP/M in whole or in part, and specifically reguires that you place the
copyright notice A

Copyright (c), 1976
Digital Research

on each diskette which results from the copy operation.
4.1. 1Initializing CP/M from én'Existing Diskette

The Eirst two tracks are placed on a new diskette by running the tran-
sient command SYSGEN, as described in the document "An Introduction to CB/M
Features and Facilities." The SYSGEN operation brings the CP/M system from
an initialized diskette intc memoxry, and then takes the memory image and
places it on the new diskette.

Upon completion of the SYSGEN operation, place the original diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be

2>
indicating that drive A is active. Log into drive B by typing i§9
Bz

and CP/M should respond with

B>
indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an émpty directory. Non-standard diskettes may,

however, appear as full directories to CP/M, which can be emptied by typihg

ERA *.*%,

'when the diskette to be initialized is active. Do not give the ERA command

if you wish to preserve files on the new diskette since all files will be
erased with this cdmmand.

After examining disk B, reboot the CP/M system and return to drive A for
further operations. '

The transient commands are then copied from drive A to drive B using the
PIP program. The sequence of commands shown below, for example, copy the
principal programs from a standard CP/M diskette to the new diskette:

A)PII:’ X L
. 3

*B:STAT.COM=STAT.COM, ’

*B:PIP.COM=PIP.COM,

*B:LOAD.COMFLOAD.CO%;

*B:ED-COM=ED.CO%¢

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 24 of 59

20

*B:ASM.COM=ASM.COM,
*B:SYSGEN.COM=SYSGEN.COM

*B:DDT.COM=DDT. COM) 4
*

g
bivd

The user should then log in disk B, and type the command
* *
DIR *.)

to ensure that the files were transferxed to drive B from drive A. The
various programs can then be tested on drive B to check that they were

transferred properly.

Note that the copy-oberation can be simplified somewhat by creating
a "submit* file which contains the copy commands. The file could-be
named GEN.SUB, for example, and might contain

SYSGEN,
PIP B:STAT.COM=STAT.COM,

PIP B:PIP.COM=PIP.COM,

PIP B:LOAD.COM=LOAD.COVY,

PIP B:ED.COM=ED.COM,

PIP B:ASM.COM=ASM.COM,

) PIP B:SYSGEN.COM=SYSGEN.COM,
PIP B:DDT.COM=DDT.COM,

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT GEN-,

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C {first para-
meter in PL/M), and the information is passed in Registers D,E
(second PL/M parameter). Single byte résults are returned in
Register A. If a double byte result is returned, then the high-
order byte comes back in Register B {normal PL/M return). The
transient program enters the FDOS through location "entry" (see
Section 7.) as shown in Section 2. for PL/M, or '

CALL entry

in assembly language. All registers are altered in the FDOS.

397

398

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 25 of 59

Function

O W N0 U d W N~ C

-
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

Number

System Reset

Read Consnle

Write Console

Read Reader

Write Punch

Write List

(not used)
Interrogate 1/0 Status
Alter.I/O Status
Print Console Buffex
Read Conscle Buffer.
Check Console Status

Lift Disk Head
Reset Disk System

Select Disk

Open File

Close File

Search First
Search Next
Delete File

Read Record

Write Record
Create File
Rename File
Interrogate Login

Interrogate Disk

Set DMA Address
Interrogate Allocation

Information

ASCII character
ASCII character

ASCII character

I/0 Status Byte
Buffer Address
Buffer Address

Pisk number
FCB Address

DMA Address

Result

ASCII character

ASCII char=zcter

I/0 Status Byte

True if character
Ready

Completion Code .

" st
[1] £]
n ”

Login Vector

Selected pisk
Number

Address of Allo-
cation Vector

Cas;_e 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 26 of 59

22

‘6. ADDRESS ASSIGNMENTS

The standard distribution version of CP/M is organized for an Intel

MDS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the ROM monitor provided with the MDS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of cbase and fbase.

The address assignments are

boot = O000H warm start operation

tfch = 005CH default file control block location
tbuff= 0080H default buffer location

tbase= 0100H base of transient program area
cbase= 2900H base of console command processor
fbase= 3200H base of disk operating system
entry= 0005H entry point to disk system from

user programs

1

399

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 27 of 59

7. SAMPLE PROGRAMS

This section contains two sample programs which interface with the CP/M
operating systém. The first program is written in assembly language, and
is the source program for the DUMP utility. The second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of "equates" for sys-
tem entry points and program constants. The equate

BDOS EQU 0005H

for example, gives the CP/M entry point for peripheral I/0 functieons. The
defualt file control block address is also defined (FCB), along with the
default buffer address (BUFF). _Note that the program is set up to run at
location 100H, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the console
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location 00Q0H) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below: <o

i BREAK - when called, checks to see if there is a console
character ready. BREAK is used to stop the listing
at the conscle

PCHAR - print the character which is in register A at the
console.
CRLF - send cérriage return and line feed to the console
PNIB - priﬂt the hexadecimal value in register A in ASCII
at the console
PHEX - print the byte value (two ASCII characters) in
register A at the console
ERR ~-print error flag #n at the consale, where n is
1 if file cannot be opened
2 if disk read error occurxed
GNB - get next byte of data from the ipput file. If the

IBP (input buffer pointer) exceeds the size of the

input buffer, then another disk record of 128 bytes

is read. Otherwise, the next character in the buffer

is returned. IBP is updated to point to the next o
character. '))

400

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 28 of 59

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed below, opens the input file and checks for errors.
If the file is opened properly, the GLOOP (get loop) label gets control.

On each successive pass through the GLOOP label, the next data byte
is fetched using GNB and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi-
ficant 4 bits is zero on each output. 1If so, the line address is taken
from registers h and 1, and typed at the left of the line. In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOOP continues until an end of file conditicn is detected
in DISKR, as described below. Thus, the output lines appear as

! 0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 b bb bb bb bb bb bb bb bb bk bb bb bb bb bb bb

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclaimed from OLDSP, followed by a RET to return to the console

- command processor. Note that a JMP O00OCH could be used following the
N " FINIS label, which would cause the CP/M system to be brought in again from
B the diskette {this operation is necessary only if the CCP has been over-
7 layed by data areas).

The file control block format is then listed (FCBDN ... FCBLN) which
overlays the fcb at location 05CH which is setup by the CCP when the
DUMP program 1s initiated. That is, if the user types

DUMP X.Y

" then the CCP sets up a properly formed fcb at location 05CH for the DUMP
{or any other) program when it goes into- execution. Thus, the SETUP sub-
routine simply addresses this default fcb, and calls the disk system to
open it. The DISKR (disk read) routine is called whenever GNB needs another
buffer full of data. The default buffer at location BOH is used, along
with a pointer (IBP) which counts bytes as they are processed, Normally,
an end of file condition is taken as either an ASCII 1AH (control-z), or
an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

401

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 29 of 59

-

FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTé

~s vy we we

COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

glrom : ORG 166K
6oB5 = BDOS - EQU #UB5H - ;DOS ENTRY POINT 3
ggoF = OPENF EQU 15 ; FILE OPEN K
pgl4 = READF EQU 29 :READ FUNCTION '
pep2 = TYPEF EQU 2 :TYPE FUNCTION
peol = CONS EQU 1 :READ CONSOLE .
PPBB = BRKF EQU 11 :BREAK KEY FUNCTION (TRUE IF CHAR READY)
95C = FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS
pe8e = BUFF EQU - 86H ;INPUT DISK BUFFER ADDRESS
: SET UP STACK
plep 218000 LX1 H,0
91093 39 -~ DAD Sp
g1d4 220F01 SHLD OLDSP
187 315101 LXI SP, STKTOP
N1aA C3C401 . JMp MAIN
: VARIABLES -
916D IBE: DS 2 ; INPUT BUFFER POINTER
: : STACK AREA
G1OF OLDSP: DS 2
6111 . STACK: DS 64 N
. Blsl =- STKTOP EQU $ - N
H H
; SUBROUTINES
: BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
151 ESD5C5 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
2154 PEOB MVI C,BRKF ' :
8156 CLO569 CALL - BDOS
#15% C1D1El - POP B! POP D! POP H; ENVIRONMENT RESTORED
15C C9 RET
PCHAR: ;PRINT A CHARACTER
15D ES5D5C5 PUSH H! PUSH D! PUSH B; SAVED
8l60 -0EQ2 . MVI - C,TYPEF
8162 SF MOV E,A :
163 CLO500 . CALL BDOS
166 C1DlEl BOP B! POP D! POP H; RESTORED
@169 C9 : RET
) CRLF:
#16A 3E@D MVI A,@DH
#16C CDBSDA1 . CALL PCHAR
B16F 3EQA MVI A, 0AH
171 CD5DB1 . CALL PCHAR
p174 C9 RET
z v
! -
) PNIB: ;PRINT NIBBLE IN REG A
0175 E6QF . ANI AFH ;LOW 4 BITS
G177 FEQA CPI =~ 18
‘8179 D28161 JNC P19

402

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 30 of 59

; LESS THAN OR EQUAL TO 9
3¢ C630 ADI 9
C38381 e gMP_ PRN —
: GREATER OR EQUAL TO 1¢
€637 Pl@: ADI ‘AT - 16
CD5DA1 PRN: CALL PCHAR
c9 RET
PHEX: ;PRINT HEX CHAR IN REG A
FS PUSH PSW '
oF RRC
gF RRC
gF RRC
gF RRC
CD7581 CALL PNIB sPRINT NIBBLE
Fl POP PSW
I CD7501 CALL PNIB
: 83193 C9 RET
ERR: ;PRINT ERROR MESSAGE
9194 CD6AZ] CALL CRLF
#197 3E23 MVI A, #°
199 CD5DA1 CALL PCHAR
p19C 78 MOV A,B
19D C638 ADI ‘8°
g19F CDSD@1 CALL PCHAR
P1A2 CD6AGL CALL CRLF
91A5 C3F741 JMP FINIS
. GNB: :GET NEXT BYTE
01A8 3A0DS1 . LDA IBP
_ 91AB FE8O © CPI 804
K 91AD C2B401 JNZ G@

READ ANOTHER BUFFER

~e w3 we

9186 CD1682 ‘ CALL DISKR
g1B3 AF XRA A
GB: . ;READ THE BYTE AT BUFF+REG A
g91B4 S5F MOV E,A
- §1B5 1600 MVI D,
81B7 3C _ INR A
g1B8 320D61 STA IBP

POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS

-y =

g1BB E5 - : PUSH H

@1BC 218808 - LXI H,BUFF
@1BF 19 DAD D

61C@ 7E MOV A,M

BYTE IS IN THE ACCUMULATOR

—e w3 we

RESTORE FILE ADDRESS AND INCREMENT

gicl E1 POP - 3!
01C2 23 INX H
ﬁ@' #1C3 C9 RET
MAIN: ; READ AND PRINT SUCCESSIVE BUFFERS
#1C4 CDFF@G1 CALL SETUP :SET UP INPUT FILE
- e . -

403

HEl
i

404

a1C7
g1Co
p1CccC

glcr
01D2

81D3
#1D4
31D6

p1D9

81DC
p1DF
g1E2

91E3
91E4
B1E7
@1E8

01EB
91ED
B1F8
AiF}

A1F4

B1F7
@1FA
B1FD
g1FE

895C
885D
9865
o968
3068
8@7cC
B87D

B1FF
3202
0204

B267

8289

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 31 of 59

3E80
326001
21FFFF

ChAagal
47

7D
E6DF
C2EBO1

Ch6Afl

CD5161
ar
DAF701

7C
CbD8781
7D
CDh8781

3EZ8
CD5D#1
78
Cb8741

C3CFpAl

CDeAB1
2A9F@1
F9
C9

115Cpa
BEQF
Cb@504d

FEFF
c211@2

;
GLOOP:

e

NONUM:

EPSA:

FINIS:

we we ™

FCBDN
FCBFN
FCBFT
FCBRL
FCBRC
FCBCR
FCBLN

.
’

SETUP:

.
r

MVI A, 88H

STA IBP ;SET BUFFER POINTER TO 8@H
LXI . H,@FFFFH ;SET TO -1 TO START
CALL GNB

MOV B,A

PRINT HEX VALUES

"CHECK FOR LINE FOLD

MOV AL
ANT ard ;CHECK LOW 4 BITS
JNZ NONUM

PRINT LINE NUMBER
CALL CRLF

CHECK FOR BREAK KEY

CALL BREAK

RRC : |
Jc FINIS ;DON’T PRINT ANY MORE
MOV a,H

CALL PHEX

MOV A,L

CALL PHEX

MVI a, " -

CALL PCHAR

MOV A,B

CALL PHEX

Jup GLOOP

;END PSA
; END OF INPUT
CALL CRLF
LHLD - OLDSP

SPHL
RET

FILE CONTROL BLOCK DEFINITIONS

EQU FCB+0 +DISK NAME

_EQU FCB+1. ;FILE NAME

EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)

EQU FCB+12 . ;FILE S CURRENT REEL NUMBER

EQU FCB+15 ;FILE’S RECORD COUNT (@ TO 128)

EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (8 TO 127}
EQU FCB+33 ;FCB LENGTH '

;SET UP FILE
OPEN THE FILE FOR INPUT

LXI D,FCB
MVI C,OPENF
CALL BDOS
CHECK FOR ERRORS
CPI 255

JNZ OPNOK

—

B21C
221E
8221
#8224
0226

8227
3229

p22c
B22F

B231

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 32 of 59

_ : BAD OPEN
#6041 : MVI B,1 ;OPEN ERROR
CD9481 CALL ERR
OPNOK: ;OPEN IS OK. 28
AF XRA A ,
327Cg0 STA FCBCR
ol RET
DISKR: ;READ DISK FILE RECORD
E5D5C5S . PUSH H! PUSH D! PUSH B
115Cpo LXI D,FCB
PE14 MVI C, READF
CDB589 CALL BDOS
C1D1El POP B! POP D! POP H) o
FE@Q CPI a ;CHECK FOR ERRS
(of | RZ
; MAY BE .EQF
FEB1 CprI1 1
CAF741 JZ FINIS
f
9602 MVI B,2 ;DISK READ ERROR
CD9481 CALL ERR

e

END

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 33 of 59

The PL/M program which follows implements the CP/M LOAD utility. 9The
function is as follows. The user types Sk

LOAD filename2

If filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file :

filename.COM

where the COM file contains an absolute memory image of the machine édde,
ready for load and execution in the TPA. If the file does not appear on
the diskette, the LOAD program types

SOURCE IS READER
and reads an Addmaster paper tape reader which contains the hex file.

The LOAD program is set up to load and run in the TPRA, and, upon com—
Pletion, return to the CCP without rebooting the system. Thus, the pro-
gram is constructed as a single procedure called LOADCOM which takes the
form

OFAH:
LOADCOM: PROCEDURE;
/* LIBRARY PROCEDURES */

MON1l: ...
/* END LIBRARY PROCEDURES *x/
MOVE: ...

GETCHAR: ...
PRINTNIB: ...
PRINTHEX: ...
PRINTADDR: ...
RELOC: ...
SETMEM:
READHEX :
READBYTE :
READCS:
MAKEDOUBLE :
DIAGNOSE :
END RELOC;

DECLARE STACK(16) ADDRESS, SP ADDRESS;
SP = STACKPTR; STACKPTR = .STACK (LENGTH {STACK));:

CALL RELOC;

\\ STACKPTR = SP;
RETURN 07
END LOADCOM;

EQF

406

407

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 34 of 59

30

inni A ilation to OFAH,
The label OFAH at the beginning sets the origin of the compilatio

which causes the first 6 bytes of the compilation to be igﬂorezr:#gzlizzgea
(i.e., the TPA starts at location 100H and.thus OFAH, . .- JFFH T e
from the COM file). In a PL/M compilation, these 6 bytes are u : thig
the stack pointer and branch around the subroutines in the progizmin tze
case, there is only one subroutine, called LOADCOM, w@ich resu

following machine memory image for LOAD .

‘ TACK
OFAH: LXI SP,plmstack ;SET SP TO DEFAULD'EO;
OFDH: JMP pastsubr ;JUMP AROUND LOR
100H: beginning of LOADCOM procedure
end of LOADCOM procedure
RET

pastsubr:
ET
HLT

jn the load,
however, that
so been deleted;

Since the machine code between OFAH and OFFH is deleted
execution -actually begins at the top of LOADCOM. Note.
the initialization of the SP to the default stack has als9: it stack and
thus, there is a declaration and initialization of an expll; This is
stack pointer before the call to RELOC at the end of LOADCObéot operation:
necessaxy only if we wish to return to the CCP without @ relaration of :
otherwise the origin of the program is set to 100H, the dec ccomplished
LOADCOM as a procedure is not necessary, and termination is a

by simply executing a

GO TO O000H;

y system re-
at the end of the program. Note also that the overhead foih:rsgme for
boot is not great (approxiimately 2 seconds), but can be DO 4 the extra
system utilities which are used quite often, and do not nee
space.

”

The procedures listed in LOADCOM as "library procedures a;zeaRzzggdard
set of PL/M subroutines which are useful for CB/M interface.tions sLo
procedure contains several nested subroutines for local funcM Céntrol
actually performs the load operation when called from 10 3 ;nd o itialized
initially starts on line 327 where the stackpointer is save copied to
to the local stack. The default file control block name *S St the same
another file control block (SFCB) since two files may be'OPeexists. TF oot
time. The program then calls SEARCH to see if the HEX file it 1o opened o
then the high speed reader is used. If the file does exlzt;lt file tontrol
input (if possible). The filetype COM is moved to the de8WE = =~ 0
block area, and any existing copies of filename.COM files & entes & mew
the diskette before creating a new file. The MAKE operatlgzle Sod produce
file, and, if successful, RELOC is called to read the HEX filo is closed
the COM file. At the end of processing by RELOC, the coM 1-3 since it
(1ine 350). Note that the HEX file does not need to be.clOOt ermanently
was opened for input only. The data written to a file is n
recorded until the file is successfully closed.

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 35 of 59

3t

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilitles of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location 80H and moves each
buffer into a vector called SBUFF (source buffer) as it is read. On exit,
the GETCHAR procedure returns the next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs.the opposite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window" on the loaded code. If there
is an attempt by RELOC to write beslow this window, then the data is ignored.
If the data is within the window, then it is placed into MBUFF (memory
buffer). 1If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively (by 128 byte buffers), and moving the base
address of the window. Using this technique, the * programmer can recover
from checksum errors on the high-speed reader by stopping the reader,
rewinding the tape for séme distance, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction}. Again, the
SETMEM procedure uses the default buffer at location 80H to perform the
disk output by moving 128 bytg segments to BOH through OFFH before each
write.

408

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 36 of 59

32

“gegel 1 . '
@@982 1 @FAH: DECLARE BDOS LITERALLY “d@@SH-
gaag3 1 /* TRANSIENT COMMAND LOADER PROGRAM
0ppG4s 1
86005 1 COPYRIGHT (C) DIGITAL RESEARCH
806006 1 JUNE, 1975
6EER7 1 */
06068 1
G869 1 LOADCOM: PROCEDURE BYTE;
08810 2 DECLARE FCBA ADDRESS INITIAL(5CH) ;
88011 2 DECLARE FCB BASED FCBA (33) BYTE;
Bes12 2 .
69013 2 DECLARE BUFFA ADDRESS INITIAL(8@H), /* I/0 BUFFER ADDR
ESS */
66014 2 BUFFER BASED BUFFA (128) BYTE;
8@815 2
goele 2 DECLARE SFCB(33) BYTE, /* SOURCE FILE CONTROL BLOCK * :
/ ' :
68017 2 BSIZE LITERALLY “1824° ;
BeB18 2 EOFILE LITERALLY “1AH® ;
6ee19 2 SBUFF (BSIZE) BYTE /* SOURCE FILE BUFFER */ .
60828 2 INITIAL (EOFILE), i
68921 2 RFLAG BYTE, . /* READER FLAG */ !
08922 2 . SBP ADDRESS; /* SOURCE FILE BUFFER POINTER o
*/ '
99923 2 ;
, 80024 2 /* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK F
P | ROM THE
/ 8aP25 2 CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACE
S THE MACH
gBE26 2 CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND
*/
8627 2 /¥ Frxkrkkkkxksxxik [[TRBRARY PROCEDURES FOR DISKIO ***x%##
*khkkkk */
#0028 2 :
#8929 2 MON1l: PROCEDURE (F,A);
90038 3 DECLARE F BYTE, ;
8831 3 A ADDRESS; i
ge@32 3 GO TO BDOS; ik
0833 3 END MON1; i
90834 2 i
06635 2 MON2: PROCEDURE(F,A) BYTE; !
06036 3 DECLARE F BYTE, : i
98837 3 A ADDRESS: B
6838 3 GO TO BDOS;. . - :
pBaA39 3 END MON2; :
PAGAB 2 - R
68041 2 READRDR: PROCEDURE BYTE; _ i
0042 3 7* READ CURRENT READER DEVICE */ B
06843 3 RETURN MON2(3,90) ; X
agas 3 END READRDR; i
08045 2 H
9 #0046 2 DECLARE . i
60647 2 TRUE LITERALLY ‘1°, i
oG48 2 FALSE LITERALLY “¢°, o
69849 2 FOREVER LITERALLY "WHILE TRUE’ 1
A0850 2 CR LITERALLY °13° k

409

]

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 37 of 59

08951
28052
08053
20054
28055
00056
08857
209858
08A59
00D60
80961
00862
008063
00864
00065
08066
00067
60068
60869
20670
20671
e0872
8073
6o874
86075
#0876
08077
68078
@0679
20080

— peasgy

J 80682
00083
80884
20985
P86
eB087
pegss
0B8g89
BEBog
Beo91
2pp92
08993
0eg94
PBGos
80096
80397
g@9g
@agg
01gg
91¢1
00102
60193
99194
9d1ps5
Balags
g9197
20198
98199
8611p

2
2
2
2
3
3
3
2
2
3
3
3
2
2
3
3
3
3
3
3
2
2
2
2
3
3
2
2
3
3
3
2
2
3
3
3
2
2
3
3
3
2
2
3
3
3
2
2
3
3
2
2
3
3
3
2
2
3
3
3

""LF LITERALLY "18°,
WHAT LITERALLY “63°;:

PRINTCHAR: PROCEDURE (CHAR) ;
DECLARE CHAR BYTE;
CALL MON1({2,CHAR);

END PRINTCHAR;

CRLF: PROCEDURE:
CALL PRINTCHAR(CR) ;
CALL PRINTCHAR(LF) ;
END CRLF;

PRINT: PROCEDURE (A) ;
DECLARE A ADDRESS:
/* PRINT THE STRING STARTING AT ADDRESS A UNTIL THE
NEXT DOLLAR SIGN IS ENCOUNTERED */
CALL CRLF;
CALL MON1(9,A);
END PRINT:

DECLARE DCNT BYTE;

INITIALIZE: PROCEDURE;
CALL MON1(13,0);
END INITIALIZE;

SELECT: PROCEDURE (D) ;
DECLARE D BYTE;
CALL MON1(14,D);
END SELECT:

OPEN: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(15,FCB);
END OPEN;

CLOSE: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(16,FCB);
END CLOSE;

SEARCH: PROCEDURE (FCRB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(17,FCB);
END SEARCH;

SEARCHN: PROCEDURE;
DCNT = MON2{18,9):
END SEARCHN;

DELETE: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
CALL MON1(19,FCB);
END DELETE;

DISKREAD: PROCEDURE (FCB) BYTE;
DECLARE FCB ADDRESS:;
RETURN MON2 (20,FCB);

END DISKREAD;

411

92118
¥6119
668120
p6121
98122
66123
vB124
20125
28126
pe127

kkkkx */

00128
30129
#0130
29131
80132
68133
06134
BB135
26136
#0137
#6138
68139
BO140
pa141
A0142
§8143
06144
08145
00146
09147

RORS ")
00148
80149
00150
68151
08152
60153
00154
86155
86156
06157
66158
88159
00160
90161
60162
00163
60164
40165
60166
60167
90168

-e

hhﬂAwLuuHquuthMUthﬂdUthJN

NLMUJQJMPOUJUJWtﬂhJM?ON)N(ﬂUJ&Lﬂu1m

"MAKE: PROCEDURE (FCB);

tUhJWl»UJNPOUJwLUN)NLMU)thM

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 38 of 59

DISKWRITE: PROCEDURE(FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN MON2(21,FCB); 24
END DISKWRITE:

DECLARE FCB ADDRESS;
DCNT = MON2(22,FCB);
END MAKE;

RENAME: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
CALL MON1(23,FCB};
END RENAME;

/* kkkkkkkkkkkkkkkkkxk* END OF LIBRARY PROCEDURES khkhkkhkk™

MOVE: PROCEDURE (S,D,N);
DECLARE (S,D) ADDRESS, N BYTE,
A BASED S BYTE, B BASED D BYTE;
DO WHILE (N:=N-1} <> 255;
B = Aj; 8=S+1; D=D+1;
END;
END MOVE;

GETCHAR: PROCEDURE BYTE;
/* GET NEXT CHARACTER */
DECLARE I BYTE;
{F RFLAG THEN RETURN READRDR;
IF (SBP := SBP+l) <= LAST(SBUFF) THEN
RETURN SBUFF (SBP);
/* OTHERWISE READ ANOTHER BUFFER FULL */
DO SEP = © TO LAST(SBUFF) BY 128;
IF '(1:=DISKREAD(.SFCB)) = @ THEN
. CALL MOVE(89H,.SBUFF{S5BP),80H); ELSE
DO; IF I<>1 THEN CALL PRINT(. DISK READ ER

SBUFF (SBP) = EOFILE;
SBP = LAST (SBUFF);
END;
END; :
SBP = @; RETURN SBUFF;
END GETCHAR; '
DECLARE
STACKPOINTER LITERALLY “STACKPTR ;

PRINTNIB: PROCEDURE (N);
DECLARE N BYTE; ,
“IF N > 9 THEN CALL PRINTCHAR(N+ A"-19); ELSE
CALI, PRINTCHAR(N+ 87);
END PRINTNIB;

PRINTHEX: PROCEDURE(B) ;
DECLARE B BYTE; :
CALL PRINTNIB(SHR(B,4)); CALL PRINTNIB (B AND @FH};
END PRINTHEX; ' ’

412

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 39 of 59

BA169
80179
60171
60172
86173
80174
60175
80176
86177
00178
08179
00189
96181
£0182
88183
Br184
PB185
0C */
28186
06187
29188
28189
00199
Br191
26192

'‘BB193
80194
#0195

GRAPH */

88196
20197
#8198
80199
66200
pO201
60202
00203
80204
60285
66206
80207
po208
p0209
P21
p9211
0212
08213
09214
00215
08216
08217
09218
00219
60228
08221
09222
09223
00224
06225

uwwwwwuwwwwmmwwum

W W W W W

LU N -

PRINTADDR: PROCEDURE({A) ;.

/* INTEL HEX FORMAT LOADER */

RELOC: PROCEDURE;

DECLARE A ADDRESS;
CALL PRINTHEX(HIGH(A)) ; CALL PRINTHEX (LOW (A}) ;

END PRINTADDR;
3s

DECLARE (RL, CS, RT) BYTE;

DECLARE
LA ADDRESS, g LOAD_ADDRESS _*/ . _ . ..
TA ADDRESS, TEMP ADDRESS #*/
SA ADDRESS, /* START ADDRESS */
FA ADDRESS, /* FINAL ADDRESS */
NB ADDRESS, /* NUMBER OF BYTES LOADED */
SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL

MBUFF (256) BYTE,
P BYTE, .
L. ADDRESS;

SETMEM: PROCEDURE({B);
/* SET MBUFF TO B AT LOCATION LA MOD LENGTH (MBUFF)

DECLARE (B,I) BYTE;
IF IA < L THEN /* MAY BE A RETRY */ RETURN;

DO WHILE A& > L + LAST(MBUFF); /* WRITE A PARA

DO I = @ TO 127; /* COPY INTO BUFFER */
BUFFER(I) = MBUFF(LOW(L)); L =L + 1;

END; _
/* WRITE BUFFER ONTQ DISK */
P=P + 1;

IF DISKWRITE(FCBA) <> @ THEN
DO; CALL PRINT(. DISK WRITE ERRORS '};

HALT;
/* RETRY AFTER INTERRUPT NOP */
L =1L - 128;
END; .
END;
MBUFF (LOW(LA)) = B;
END SETMEM;

READHEX: PROCEDURE BYTE; -
/* READ ONE HEX CHARACTER FROM THE INPUT */

DECLARE H BYTE;
IF (H := GETCHAR) - '@ <= 9 THEN RETURN H - '@7;

IF B - "A° > 5 THEN GO TO CHARERR'

RETURN H - “A° + 18;
END READHEX;

- READBYTE: PROCEDURE BYTE;

/* READ TWO HEX DIGITS */
RETURN SHL (READHEX,4) OR READHEX;
END READBYTE;

READCS: PROCEDURE BYTE;
/* READ BYTE WHILE COMPUTING CHECKSUM */

\-ma.l" %

.
r

N

-
r

TERED
79268
pB269

692749
298271
pB272
90273
90274
208275
88276
a8277
pp278
88279

N VIRVERF - Y

Lo 0 L) Lo b L ol = UT LT LT i & BT

B LN W

SR VR VS IUVIN S IR S I FE2 S I

ot O B dD W WD B

Case 2:05-cv-01?19-TSZ Document 14-10 Filed 03/15/07 Page 40 of 59

DECLARE B BYTE;

CS = CS + (B := READBYTE);

RETURN B;

END READCS; 36

MAKESDOUBLE: PROCEDURE (H,L) ADDRESS; ‘
/* CREATE A BOUBLE BYTE VALUE FROM TWO SINGLE BYTE

DECLARE {H,L) BYTE;
RETURN SHL (DOUBLE (H) ,8) OR L
END MAKESDOUBLE;
DIAGNOSE: PROCEDURE;
DECLARE M BASED TA BYTE;

NEWLINE: PROCEDURE;) . -
_ CALL CRLF; CALL PRINTADDR(TA}; CALL PRINTCHAR(:)

CALL PRINTCHAR(™ ")
END NEWLINE;

/* PRINT DIAGNOSTIC INFORMATION AT THE CONSOLE */
CALL PRINT(. LOAD ADDRESS §); CALL PRINTADDR(TA):
CALL PRINT (. ERROR ADDRESS $7); CALL PRINTADDR(LA):

CALL PRINT{, "BYTES READ:S$) ; CALL NEWLINE;
DO WHILE TA < LAy
IF (LLOW(TA) AND QFH) = # THEN CALL NEWLINE:
CALL PRINTHEX(MBUFF (TA-L)): TA=TA+1;
CALL PRINTCHAR({ '):
END; ’

CALL CRLF;

BALT;

END DIAGNOSE;

/* INITIALIZE */

SA, FA, NB = 8;

SP = STACKPOINTER;

P = @; /* PARAGRAPH COUNT */

TA,LA,L = 18PH; /* BASE ADDRESS OF TRANSIENT ROUTINES

IF FALSE THEN
CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOU

DO; /* RESTORE STACKPOINTER */ STACKPOINTER = SP;
CALL PRINT{. NON-HEXADECIMAL DIGIT ENCOUNTERED $)

CALIL. DIAGNOSE;
END;

/* READ RECORDS UNTIL :88XXXX IS ENCOUNTERED */

DO FOREVER;

/*¥ SCAN THE : */
DO WHILE GETCHAR <> “:7:
END; .

413

T T R
S RS A SR SR

414

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 41 of 59

00280
80281
TH */
09282
00283
89284
00285
00286
06287
90288
98289
6B298
08291
60292
86293
86294
08295
68296
88297
56298
90299
08300
68301
00382
80303
68304
383065
69306
00367
06308
60309
pE310
28311
0312
pr313
68314
80315
#8316
80317
38318
86319
@0320
#8321
#0322
08323 .
HEX TAP
00324
66325
06326
66327
20328
80329
30339
96331
60332
PA333
ga334
#0335
‘#3336

o B

uww&uwwuwwbmmh@»&bhmhbbbhbhb#bbbhbbb

NNNNNNNMMI\JNNNWMNMU)Q)WM

/* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENG:

CcS = 9;
/* MAY BE THE END OF TAPE x/ 37
IF (RL := READCS} = § THEN

GO TO FIN;
NB = NB + RL;

TA, LA = MAKESDOUBLE (READCS ,READCS) ;
IF SA = B THEN SA = LA;

/% READ THE RECORD TYPE (NOT CURRENTLY USED) */
RT = READCS;

/* PROCESS EACH BYTE */
DO WHILE (RL := RL - 1} <> 255;
CALI, SETMEM{READCS); LA = LA+l;
END;

iF LA > FA THEN FA = LA - 1;

/* NOW READ CHECKSUM AND COMPARE */

IF CS + READBYTE <> @ THEN
DO: CALL PRINT(, CHECK SUM ERROR $'1l:
CALL DIAGNOSE;

END:
END;
FIN:
/* EMPTY THE BUFFERS */
TA = LA;

DO WHILE L < Ta;

CALL SETMEM(@); LA = LA+l;

END;
/* PRINT FINAL STATISTICS */
CALL PRINT (. FIRST ADDRESS $°); CALL PRINTADDR(SA};
CALL PRINT{. LAST ADDRESS $°); CALL PRINTADDR(FA);
CALL PRINT (. BYTES READ $°): CALL PRINTADDR(NB);
CALL PRINT (. RECORDS WRITTEN $°); CALL PRINTHEX(P);
CALL CRLF;

END RELOC;

/* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE™

/* SET UP STACKPOINTER IN THE LOCAL AREA */

DECLARE STACK(16) ADDRESS, SP ADDRESS; i
Sp = STACKPOINTER; STACKPOINTER = .STACK (LENGTH (STACK) } ;

SBP = LENGTH({SBUFF) ;

/* SET UP THE SOURCE FILE */
- CALL MOVE (FCBA,.SFCB,33):
CALL. MOVE(.{ HEX ,0),.SFCB(9),4);
CALIL SEARCH{.SFCB); :
IF {RFLAG := DCNT = 255) THEN
CALL PRINT (. SOURCE IS READERS "}; ELSE
DO; CALL PRINT(. SOURCE IS DISKS) ;

e s e ety Y

415

o

oNa1

58337
{90338

A ES)i

B339
26340
29341
90342
#6343
08344
2G345
#6346
66347
pO348
}; ELSE
#0349
ga35a
#p351
BE;
o352
p9353
Bad354
28355
96356
BB357
¥P358
249359
06360

w Wi RN NMRNND W [SCR

NN W

Crz:ase 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 42 of 59

CALL OPEN(.SFCB);
IF DCNT = 255 THEN CALL PRINT (. -CANNOT OPEN SOURC

ERD;
CALL CRLF; 38

CALL MOVE(. COM’,FCBA+9,3);

/* REMOVE ANY EXISTING FILE BY THIS NAME */.
CALL DELETE (FCBA) ;
/* THEN OPEN A NEW FILE */

CALL MAKE(FCBA); ' FCB(32) = 0; /* CREATE AND SET NEXT RECORD */
IF DCNT = 255 THEN CALL PRINT (. NO MORE DIRECTORY SPACES

DO; CALL SELOC;
CALL CLOSE (FCBA):;
iIF DCNT = 255 THEN CALL PRINT (. CANNOT CLOSE FILES

END;
CALL CRLF;

/* RESTORE STACKPOINTER FOR RETURN */
STACKPOINTER = SP;

RETURN 0;

END LOADCOM;

EQF

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 43 of 59

EXHIBITP

416

417

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 44 of 59

WEVNEDUAT MuUnniNG

- oy LTTA

% P-1 SPECIAL REPORT

By Julls Melone-

Coxt Nown Servics

WASHINGTON — Pres(dnnt Bulh'
heertbent was cauped' by a

irreguiar
“mild™ hyperthyroid condition. thal esp -

Bush’s tl

‘Dectors say it can be -easily treated -

.
Bush will return to Bethesda Naval

“Medical .Center. in Maryland today for

tests (6 determine ihe cause of the
overiictive thyrold, doctors said.
The While House said the president

be eastly treaied, his doctor .-md jast wolld nol.be kept overnight at the

ldg-r Burton Lee, the presxden!!s :mer
physician, aaid he was “very-.plesged™
that tests laken over the ‘wegkes
Iud traced Bush's episnde of an unpve

eart rate i thyroid -overactivity: Shich
he sn!d could be cured relatively q‘diuo-

,Bospital.
'I'heumdlhun biochemical hyperthy-

. roidiam, is related to thal suffered by

Barbars. Bush who bad an enlarged

the exacl type of Buxh's thyroxd dlsorder

‘and-determine the
they expected o adminjster next week.
Meanwhile] Lee said of the president,

“He's: l'ine. but wé’re not going t4 waste -

any Ume,"”
Dr. Kanneth Byraen, an Army colo-

nel and Wnl!:r Reed” endrocrinologist -

who s also in charga of caring for Mra,

-Bush, listed four possible treatments for

the president: a radjaactive isdine drink,
which Mrs. Bush took: plils to counier the
excess thyrold-actions: surgery: and wail-
ing for the pmhiem to subside.

The president wes “efated” when Lee

thyraid:
- Thc‘przsldem s daelors said (hey brought the newa to him yestérday alter-
wonldconunue tests this week to find cul noon, said Merlin Filzwster, the While Sce8

roid at heart of g

lime 1
of the

—

to IBM start,

-—ywith-anewtie

Thind of Fve Parts
-By Jamee Waltace - -
:'ﬂlm!ﬂdun
't was one of the most impor- -

tanl meelings of his life, and
Bill Gales didn't have a

e‘!?le had spent a sleepless
night on the red-eye from Seattle
1o Miami, feeding his photo-
graphic memary with bits and
bytes of business:and téchhiesl,

":‘-‘rnrnrmnuon ﬁ.rm:eunrwltﬁ B E

1BM executives gt their offic) up .
the Floride coast in Boca R

. Gatles carried with hlm a ﬂnll
report on how “the jeans-and-
lennis-shoe boys at Micromolt
could work with the white-shirts-
and-wingtlp crowd at IBM on
Project Chess, code name for 8
secret -{BM--effort (o develop .a
personal compuler.

A Fair shares; A 3-for-2 Bsgm of
Microsoft stock.

As hiz renlsl car sped north
from. the Mismt alrport to Boca
Raton, Gates, wired with excite-
ment and lack of sleep, slopped
at a department store snd waited
ftl‘)r it to open so ke could buy B
Lie.

Normally, Gates is not big on
appropriate dress. But, after all,
this-was IBM, an Amerlcan Insti-
tution with a work force morc
then half as large as the popula-
tion of Seattie.

Althaugh he was 15 minutes
fate, the meeting {hat maming -
went well. The 25-year-dfd Gates,
new tie dangling from his neck,
confidently apswered qu::unn
after question from much older
executives. o

-A couple”of monthi h{er in
Noversber 1980, the ‘torporate -

- odd- couple signed -thepapers:-
‘Mlcrosolrwould developthe™ oF
erating sy for IBM'’s
computer. The operating system
would be the base layer of soft-
ware that eontrotied the comput-
_er's intemal functions. Applica-
lion programs used on top of the

for specific-uses; such ax word
processing.or spreadsheets,

How Gates minaged such n
feat iz largely unimdwn by the 40

operating system would provide | ’

Mﬂdtr

Such sre the living tnndl- X
tions for Marands and & dozen °

life..” et
-, Nestled. bemnlh a
tree, the -homre_ia _hidden'3
—and- grime-of- ity urtunl';u
barbecug if al ths fro
porhl pwvldes ent.ry [br
nd twoidstd.

lnmle-irc postraits :?fﬂ'

eled .
mpdd Ap

Sou BRL GATES, Page A4

Ia:some respecls, Serglo Marunda's dents of “the ranch,” uhmw
hame hax the u’-ﬁplm 9t mldlellsx }lo}vn concealed on a wooded

d s Kisa.- By Blo- neolxl.y mde nald MMJ”
-.;gd ﬁ_ql:'@i'nuﬂpuon “Kay- ll!othuyu for, a8, 10ig 2%
ny raAsins:-io Ratice -

home i

¥,
Cirdssb talner
;3071516‘: Thm ma!

ar— 50 oliret WHMI‘I

where, 12th Avenue South ~
South)

. PaH
-7 0 Wey habE tpgon - - -

intend to clear out the area by the end of

2ot may be Crmcics

by copyright law {Tithe 17 U S. Code)

et sty 'w,ﬁswm:.a{
cre: a

o mk&bum- Sg. J'p!llq anplng, whe hesds the East
ty palice team Prilire

m hlh,):p& are h‘oh‘ling off whlle
‘sattlement, though

assistance, ofﬂclnh sai
The pmpeny is

Seﬂ.'rmm.

¢ :It nbM;:w homes &gr th: mld:;?
nmnlcn i of movang.in
'Ea i the pack”
ucﬂon-depcnds-an—(hutle!ppﬂv-lr’}
PropeNy oWt Wia' hﬁd asked for poll'-:e

_Rpson

clw

EXHIBIT NO, .22
/18 -G

C. HAMMER

418

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 45 of 59

Ties that bind
Microsoft, IBM
‘'wearing thin

" From Page 1

million or so peaple who have helped
make him a very wealthy man by
buying compiifers that use Microsoft's
disk operating system, belter known
as MS-DOS.

“Gates had bought DOS from an
unsuspecting Seattle compater com-

pany for $50,000, then made the deal |

of the centun' with IBM.
Whether by luck or by genius,
Chairman Bill had hitched a ride
. with one of the most respected and
feured names in corporate America.
L was the break his small Sealtle .
software {irm necedod. DOS, would
become s impartant ib the computer
industry as the internzl combustion:
engine to modern transportation. Al-".
most overhight, it seemed, Microsoft
was the most successful compahy on
the planet, and Gates was the world’s
software tycoon, lhe Henry Ford of

aﬂd Momy

PRI N

mamwliﬂm

.;-,.

i3 BiiH lﬁvwh
. apmseothczs, cspccxally whcn dlglgc momc-
‘*“’dxmg to-winor lose.
[y ﬁ“‘”’ﬁ%‘ﬁﬂmﬁ%&
when he was g-on all spres of things,
?&cﬂlwho was older, jxmmy Treybig (fousder of Tan-
m;eo Sam Armacost(diz

brilliant and mhaverick
IBM manager -who di-
- recied Project Chess;
would later. tell his
friend ‘Gates that IBM
Chairman John. Opel
was impressed when he
learned Microsoft and
;—B'lg‘Blurrmg
business together,
Even though he had
not met Gates, Opel

"-‘;;' young cempuler whiz

& iiBlon|__from Seattie because
" he snd” Mary Gates,

Bill’'s mother, had
served together on the national board
of United Way. How much this may
have helped Mierosoft get the IBM

deal is not lmovm Opel, now rehred .

won't talk. -
A ot hnz ch\anged in the 10 years

- since, N et et
For one thing, Mary Gates is no

longer on United Way's nauonal
board. Her son is.

Don Estridge, the.}

i ~1hqught'-~wcll" ‘of—~the-]

‘A_nvg__the ti_es__ that bl‘nd Lﬁcrosoﬂ

419

d AR

i

N

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 46 of 59

" A lot has changed in the 10 years
kil

longer on United Way's national
board. Her son is.

And the ties that bind Microsoft
and IBM are today as threadbare as
an old pair of jeans thal have gone
through too many washes. .

The hardware and software titans

¢f the comphter world are busliy—{~

uying to outflank the other, maneu-
vering like two mighty armies on a
battlefield, each seeking an advaa-
tage.)
gM:my industry insiders say Gates
will win, as he always does. Others,
however. are not 50 sure.

. “NO ONE HAS EVER gotten into
bed with IBM and failed to get kicked
out.” says Adam Osbome, who devel-
oped the Osborne 1 personal comput-
er in the late 1970s. “I'm waiting to
see il this guy (Gates) is going 10 be 50
smart that he is going to win and IBM
is going to lose.” .

When IBM first contacted Gates in

the summer of 1980, fewer than 30

people were working out of Micro-

soft’s. offices on.the-eighth floor-of the

Oid National Bank building in down-
Aown Bellevue.

Microsoft had moved there the

* previous year from Albuquerque,

N:M.

The 1BM representative who visit-
ed-Microsoh-in-Jduly 1980-asked a- ot
of questions, but with typical IBM
secrecy gave no clues about what was
afoot. .

A month later, Gates got another
dall from IBM. Could he meet with
several of the company's engineers
the next day? Gates canceled a meet-
ing with the chairman of Atari.

he would keép everything discussed
at the meeting secret, Gates heard
about Project Chess. IBM, he wuas
told, was looking [or someone to
supply the soitware.

At the time, the standard operat-

was _something known as Contro}
Prugram/Monitor, or CP/M. 1L had
been developed hy Gary Kildall of
Digital Research.

Kildall, whose father owned a

shop_in_Seattle, had re- |

ceived his Ph.D. in computer science
o

1072 and moved lo the scenic coastal
city of Pacific Grove, Calif, There,
fosur years later, he und his wife
formed Intergalactic Digital Re-
search. The name Jaler was short-
ened lo Digital Research.

{n 1980, his CP/M operating sys-
tem had no serious competilion.

-—-—-'—'__'_-.——
7 agreement that

r—personat—computers—

nee. . . . - ‘Y 2
For one thing, Mary Gates is no | .

fir—H-and—wan

Gary Kidalt of Digih

developing an ‘operating system, but

nothing came of it

“We kept asking ourselves if we-

should really be se

business to Gary.” Wood says. “We
always came back with the same
answer; We have all this other stuff to

do.”

So when IBM came to Microsoft,
Gates once again sent a customer- to

Kildall. -

. But the deal for CP/M-lell through—
Kildall reportedly refused to make

changes IBM said il

operating system. Hegardless of what
really happened, most of those in the
helieve: Kildalt

compuler induslry;
simply blew'# 3"“‘!{!'y

red-carpet -for:
new sofltware k
. Aller sendin
Kildall, Gates h:

which was far more

of ips_in_use at the_time-and-;
would altow more sophisticated soft-

Wware programs.

Gates knew just whereto:gé for am -
operating system that would work on
the 8086 chip: Up the road to Tuk-
wila, to 3 mom-and-pop compuler
business called -Sedtile Computer
|-Produc i

designed an operatin,

_86-D0S for the company's new com- -
Puter that used the 8088 chip. . -
© Microsoft ;cofounder. Paul Allen
contacted Rad.Hrockirawner of Seal-
;lg Comnpute;-Phdﬂ‘ ugts;-and told him
crosoft had.a-customer.for 86-D0S.
o-further—develop—and—]

ted-4 A
market the operating

He couldn't, of course, tell Brock
the customer was IBM, -~

Brock agreed, and Paterson went
to work on the changes Microsoft

wanied,

And Gates, who must hsveTfeltitke
he just filled an inside straight in
_poker. flew off to Boca Raton to make.

Steve Wood; -oné of the original
programmers_at Mlcro;gfl% ﬁlﬁ KIS

1]

fhius rolied out the
gronation.of the .

BE
g _¥BM: to talk with
ad ‘been abie to
persuade the Project Chass engineers
1o design their computer around
Intel's new 8088 microcomputer chip,

nding all this

wanted in the

rman Bill,

powerful than

g system called

- whose-interview-time-wag limited. ——

2 fhe

Fresearch says there ware “remarkeble simitarities™ between MS-DOS and his CF

MS-DOS and his CP/M operating sys-

tem.

*Ask Bill why funttion code 6 (In
DOS} ends with a doliar sign,” Kildall
srys. “No one in the world imows that
but me," He says the unusual symbol.
was a carryover from his days writing
mainframe computer languages, and
was used in his CP/M. o
The Post-lutelligenger was not
able to put that question to Gates,

Only a computer programimer fa-
miliar with DOS could really under-
stand what Kildall is_talking about,
but the implication is clear.

some “low-level borrowing! But he .

.poin&.nuLﬂmLMMﬁ_
substantial improvements over Digl- {
Research's operati m.

t L 0! e
new IBM computer arrived at-Micro-
soft shorfly after Thanksgiving.1080,
Dave Bradley, an IBM engineer on
the Project Chess team, delivered the
|-com; ' @]

Sea-Tac for the trip from the airport
g downtows Bellevue, —————-~.
—" Over the next few months, Brad-
ley would make the 4,000-mile trip
between Sesttie arid Boca> Raton
mare than gnyone else, _'

ade_that_trip jt |
rained,” says Bradley, still.with IBM
in:Boca Raton. ST)
Gates had a corner office in the
downtown bank building with a view
of the Cascades.

gr—dev
system.

“On _every visit, he would tell me
that if it weren’t so cloudy I'd be abie
tosee-Mount-RainierBradiey says—
“I never did.” |)
A few years later, Bradley took a
vacation to-Seattie just to see for
himself--there; really was & Mount
Rainier. He sidyed at-Paradise Innon
the mountain's flanks.
* ~During one-trip-to—Micrasoftto -
bring a replacement part for the
prolotype, Bradley was told by his
B X

Magnu

to have slong (on camping
was always very humorous and -
chearful,” says Harl Olas, aLlakeside
friend and meimber of the Scout

in -
querque, says Gates had talked about

um Scoul’s honor -
-Chalrman Blif was a Boy Scout, &
at Sandpolint Elementary School near

son Park. “Bill wasafun guy .

| troop. Oles Is now a Seattio attomey.

Wips). Ho

deal.
“Gates- was able_

series of _good,” fartine Y
breaks,” .says_ Seymour Robiusteln,

one of -the pioneers

computer revolution who founded the
software company Wordstar. :
“There Wha.rio faresig

naton, no 1anys-

a Alliani MABEUVers,
says, “just a'liicky bredk caised by a
-combination.of.* Bigital Research

Screwing tp "4t

Products having something which
wasn't very good that.could be medi-

fied for IBM."

- -Kildall; still- ehlef- executive -of-
Digital Research, says there were’

10 ‘maximize_a-

and” lucky |

of the personal

na i .

attle Computer

sprawled -across the floor, ugoing
8P AT

last-minute fixes in the prograwm.

Paterson left Seattte’ Computer
Products In May 1881 "and. weni to
work for- Microsoft, where he official-
- ly learned for the first time-what he
aiready suzpected - the cuatomer for
- his'aperating sy!

Ori-July 2771581, Allen and Brock,

boxes. He rented a station wegon at—1—dgat-of thecent

Tsigned-a-‘cén'tm‘
~alt rights té 86

m.was. JBM._____ o

£

Paterson acknowledges there was | [

than a month |
Astoria Hotel in
unvelled-its nex

As_pawrt of
Gates was able

~ g othiey “hardw
resdit was a ¢l
puters, all using
system. .
It was. the n-
. strman 1 !

game of Monop
was no longer &
the operating sy
- "There was

tion-on-Bill's ps
the market,” sz
—had-worked-wit
" que on softwar
first personsl ¢

x—up~—thenew BASIChil R
T - working —on il | WNEW-YO
_ the computer. . . et] Speaking ge
=" “Bradiey had un early . morning | WCAtlon &8 & h
" flight back to BocaRaton, so-about b |-softwire-games.
am. he went to Microsoft's office' to | it's- ‘& “highly .1
get the BASIC. He found Gates { While hzfl_:‘h try
on the

Are maneuverin

agiinst are.oft
nies,” Gates ngy
are sitting'ther
wadolo get the
moving businex
And Gate?

th

. owner of Seattle Computar: Producu.

.| “remarkable similarities”. between.

420

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 47 of 59

's a betting man-who loves to play the game
, . Butthe betring usdally estalates into double or T

. ; --~nothingwith a few side bets. - .

B AW oIS e " OnteGates was betting with friends in a bar
with Gates when he was berting.on all sgrts of things, aboutwhat year the MGM Hotel'inEas Vegas.

ke who was older, Jimmy Trcybig (foondérof Tan- bured down. They had w call the MGM and ask. .

dem Computer Inc:) of Sam Armacost (ther'president -~ Ghairman-Bifl-fostabout $1,200 chat night. B -

But he lands a-stinging jab at his.
-friend Gates when he adds: “Bill isa | .
very bright pérson, but he's more of'a
—bsiniessman-than-inRevator”— -—-— .
“Bill Gates does not like to hear

that ke is not an {nnovator.

“IT DRIVES HIM NUTS.” says-
Stewart Alsop, a well-known industry
observer and compuler newsletter
author. He has known Gates for years.

“I's a dangerous subject to bring
up with him, but it's true.”

Alsop says Microsoft is nol an.
innovative company becguse it does
.applied research, rather than lJong-

- term research and_deyelopment like,
IBM and Apple. ' -

He has raised this issue with
Gates several (imes. /- -

“Biit will sit there, and say ‘Hey,
what about this,” and start rattling off

i| | everything Microsoft has ever done,”
| Adsopsays. ~ et

The IBM deal was clearly a case
where Gates was opportunistic rather

-than innovative. . He took exisling.
operating system software and re-
worked it to Microsoft's advantage.

‘ Gates was able to
¥ ¥ maximize a series
of good fortune and

. was no-foresight,

_ brilllant maneuv N ors;
Just a lucky break...”

— Seymour Rubinstein
founder of Wordsiar,

T

Not_leng after the [BM projeét
was done, Gates received a8 form
letler from Hig Blue: “Dear Vendor,
You've dpne 2 fine job."

W IOWESE'E RS warmpst Wway Ya begin T

a marriage, but in a way that létier -
came to reflect the relationship over
the decade. it was just business. They
were never close. o,

Gates' relationship with IBM has’
been characterized by whoever was
t | responsible for 1BM's desktop com-

puter division. o |
1" - He" got—along ~famouslywitlir Bs=—1~
tridge, the teader of the Project Chess
tearm. They. trusted each ather. Es-
tHdgamderstood thetechnology But |~
he was killed in the Delta Airlines
crash at Dellas/Forth Worth Airport
ini198g * X
. Estfidge was replaced by Bill
_Lowe, who didn't . understand the
technology -as. well. He and Gateés

. ,I»—*

421

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 48 of 59

oping an ‘operating system, but
ng came of it.

Ve kept asking ourselves if we
d really be sending all this
ess to Gary.” Wood says. “We
s came back with the same
»r: We have all this other stuff to

» when IBM came to Microsoft,
once again sent a customer to
il

1t the deal for CP/M fell through.
1t reportedly relused to make
ies IBM said it wanted in the
tmg system. Regardiess of ‘what
* happened, most of those in the
uter industry believe Kildall
y blew it, and thps rolled out ‘the
arpet for-the-coronation-of-the_
oftware king, Chatrman Bill.
Yer_sending IBM to talk with
It, Gates had been able to
ade the Project Chess engineers
asign their computer around
3 new 8086 microcomputer chip,
1 was far more powerful than
ips. in_u e—time-and—
1 allow more sophnsucated soft-

programs.
atesg knew just where tu go for an
ting system that would work on
086 chip: Up the road to Tuk-
to a8 mom-and-pop computer
ess called -Seltle Computer
raon had |

ele—There Tim . Pute
ned an operating system called
S for the company's new com-
that used the 5086 chip.
ferosoft cofounder Paul Allen
cted Rod Brock, owner of Séeat-

amputer Products, and toid him

_points_out_that _MS-DOS_ contained

- computer-to—Microsoft-i

MS-DOS and his CP/M cperating sys:

“Ask Bill why Tunction code 6 (in’
DOS) ends with a dollar sign,” Kildall
says. “No one in the world knows that

but me.” He says the unusual symbol |,
was a carryover from his days writing |

mainframe computer languages, and
was used in his CP/M.

The Post-Tntelligencer was not
sble to put that question to Gates,
whose-interview time -was Hmited, ~~
Only a computer programmer fa.
miliar with DOS could really under-
stand what Kildall is_talking about,
but the impiication is clear. °

Paterson acknowledges there was
some “low-level borrowing.™ But he

substantial improvements’ over
tal Re.-.earch'so erating

new IBM computer arrived at- Mlc
soft shortly after Thenksgiving 1060,

Dave Bradley, an IBM engineer on
the Project Chess team, dellvered the
n-nine-large—
boxes. He rented a station wagon at-
Ses-Tac for the trip from t.he mrport
to downtown Bellevue,

"Over the next few months Brad-
ley would make the 4,000-mile trip
between Sesitle and Boca: Raton
more than gnyone else.

time_I_made_that trip it |
rained,” sdys Bradley, still with 1BM
in-Boca Haton.

Gotes had & comner office in the
downtown bank bulldlng with & view
of the Cascades.

"On every visit, he would tef]l me -

soft had a customer for 86-DOS.

vanted--to—fertherdevetop-and—{—tosee Mount‘ﬂamier’—Bmdley—s

2t the operating system.

a couldn't. of course, tell Brock
1stomer was JBM.

‘ock agreed, and Paterson went
:rk on the changes Microsoft

ld Gates, who st ave felt like

st lilled an inside straight in
. flew off to Boca Raton to make

:'armmtto IBM and secoretite™

. himselJt there; really was & Mount

-prototype Bradley was told by his

team They. trusted each other, lks-

alt rights to 88:D0OS for $50,000. Lezs
than a month later, in the Waldorl-
Astaria Hotel in New York City, IBM
unveiled its new computer. -

As part of the deal with IRM,

_|_incident It eventually found its way]

"] ever said such things about their good

_] Gates &

-signed & contract that gava Microsort- -

arstoud the techology. Bot—]
he was killed in the Delta Airlines
erash at Dallaslf‘orth Worth Airport
in 1085,
stndge was replaced by’ Bill

Lowe, who didn't understand the
technology as well. He and Gates
clashed over Microsoft's development
- of Windows.
Lowe was replaced by Jim Canna-
- vino'in 1988. By then, there was great -
suspicion of Microsoft within IBM,
and the relationship became even
more strained.
b ghliast Segt‘:g:inbgt;d Intle\zfrld a

ighly e ication,
reportedmﬁ\at Gates tookpa group of
executives from Lotus Development
Corp., the world's second largest
software company, *to dinner, and_
alter a few too many drinks began
trashing IBM and Cannavino, saying
IBM wouldnt be around in 10 years,
and he, Gates, would rule all.

Sort of-a Microsoft Uber Alles.

" One of the Lotus executives went

home and wrote 2 memo about the

"{o Cannavino's desk, according to
InfoWorld.

The story was plcked up by the
national press, and Microsoft issued a
| strong denial that Chairman Bill had ’

friends at IBM,]
ut_Alsop,_edit: _Letter, |

the mnational computer newsletter,

—telis-xstory- that-woggestsothrerwise——

LAST FALL, Gates was supposed
to address a software entrepreneurs
forumn in Palo Alto, Calif,, but he was
runaing late after an all-day meeting
L with Cannavino in Milwaukee, Wis

“arrived sbon

t~five__minutes |
Mpeak_tn about 600

S e e -

~penple:— :
Afterwards, Gates and- AIsop went”
ta a bar at the [} Fornaio in Pale Alto,
next to the hotel Gates was booked in.
The speech had gone well, and
Gates was really up and havi

Gates was able to relicense MS-DUS
to eother hardware companies, The’
result was a clone industiy ef com-
puters, all using Microsoft's operating
system.

1t was the new industry standard.

2 time. Alsop, _knowing IBM ﬂna
Micfosolt weére going through a ters
_ble strain, decided it was the right
time to ask about Cannavino.
“Whenever you talk to him,"™ Al-
ays, e_any. sublect

that if it weren't so cloudy I'd be atile

“1 hever did."
A few years later, Bmdley took ..
vacation to Seattle just to see for,

Rainier. He stiyed at Paradize lnn on
the mountsin’s flanks.

Puring one trip to Mlcroson"w';
bring & replacement part for the

BKSIC'

rateg. was .able lo maximize a--
i of good _fartune and _lucky
5" says Seymour- Rubinstein,
£ the pioneers of the personai
uter revolution who {ounded the
wre company Wordstar,

‘here Wl no- l‘oren%é no lmnga- -
3; no brijliant maneuv

“just a lucky bresk caused by a
ination of Digilal Research
ing up and Seattle Computer
icts having something which
t very good that .could be modi-
wr IBM.™

idall; -stil] chief: executlve of
I Research, sayr there were
irkable similarities” beiween.

—pen-He
Jast-minute fixes in the program.

. wark for Microsoft, where he ofTical

IEI’DSO
the.computer.
‘Bradley had an’ eariy THorHiBE "

v

a.m. he went fo Microsofl's office to
gel the BASIC. He found Gstes
sprawled acrcss the ﬂoor going

uge—prin
ght making]

Paterson left Seattle Compiter
Producls in May 1981 and. went

ty learned for the first time-what
already sus — the customer fo
his'operating syate .
On July 217, 1881, Alten and Brock,

i)
3 game of Monopoly. Digital' Reselmh

flight back to ‘Boca. Raton, so.about 5. |[;

Chairman Bill had eliminated one

o longer & significant player in
rating system market.

“Phére was absolute determina-
I tion-on Blll's-part-to-take thenr-out-of-
the’ market,” says Eddie -Curry, who
‘trad -worked-witlh G
que on software for the Altair, the
first personal computer. He now has
hm—uwn—mﬁwmmnpmy"’mse"

ates- i Albuguer—

abeut personal compulers he will
nd_start'{

| immediately focus on_it,—=

|_rocking back and forth, looklng: you
" straight in in the eye, nsking the
fundamenlal questions. You've got lo
remember, he really knows every-.

““S0 I ssked him. ‘What do.you
~think of-Jim Carmavine? "By 1uck; 1
hit a hot button. He starfed ranting
end raving, seying ‘you would not

Heve wist this guy was tellingme,”

3 Speakmg generally about hit rep-
“iitstlon 8% & hardball player i the
; Gates-points-out that

haw Cannavino was telling nim,. Bill
_Gates, how_he shouid be running |
][lcmwﬁ.

it's a highly competitive business.

on top of th
Bre maneuvering to knock hiw ofl. -

against are oﬂ.en very fine compa-

nies,”. Gates says, "and you know they

sltﬂng there thlnklng, ‘What cen

“we do to get these guys'. . . It's a fast-

) business.”

; d- Gates” usunlly moves futer'
than his competitors._. .

" “They are just good business | peo-—

| owaer of Seatile Computer Products,

ple," l(:ldall says of Micmuﬂ.

White he s trymg to keep Microsoll
r companies |

i 5 na_clen:._Alanp_xan.__"that_
Gates had' to restrain himself -from
saymg more about Jim.""—

£8 may be mak-
] bhmder at Mlcro~-

those hex to IBM
“If Im right, and Gntes belleveo
he-can operate away from [BM;"the
very thing.that made Microsoft suc-
cessful will have changed,’'Alsop_
says. “Perhaps Gates cnn pull It oﬂ'

Jperhapu not.“__-_'_ e e

lemThosmconbuﬂy

il

,f-.

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 49 of 59

EXHIBIT Q

422

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 50 of 59

423

AT AR
THOMSON

—~

GALE

Design goals and implementation of the new High Performance File System. (includes
related articie on B-Trees and B+ Trees). Roy Duncan.
Microsoft Systems Journal v4.n5 (Sept 1989): pp1{13).

NOTICE: This material may be prowctes

Abstract:

The High Performance File System (HPFS) enhancement to OS/2 Version 1.2 solves all
the problems of the File Allocation Table (FAT) file system and is designed to meet the
demands expected into the next few decades. HPFS not only serves as a way to
organize data on random access block storage devices, but is also a software module
that translates file-oriented requests from applications programs to device drivers. HPFS
is also an example of an installable fite system, which makes it possible to access
several incompatible volume structures on the same OS/2 system simultaneously.
Excellent throughput is achieved by the use of advanced data structures such as
intelligent caching, read-ahead and write-behind. Disk space is managed more
economically by the use of sectoring. HPFS also includes greatly improved fault
tolerance. Applications programs need only simple modifications to make use of
extended attributes and long filenames.

Full Text:COPYRIGHT Microsoft Corp. 1989

THE HPFS IS A WAY OF ORGANIZING DATA ON A RANDOM ACCESS BLOCK
STORAGE DEVICE. IT IS ALSO A SOFTWARE MODULE THAT TRANSLATES FILE-
ORIENTED REQUESTS FROM AN APPLICATION PROGRAM INTO MORE PRIMITIVE
REQUESTS THAT A DEVICE DRIVER CAN UNDERSTAND.

The High Performance File System (hereafter HPFS), which is making its first
appearance in the OS/2 operating systemVersion 1.2, had its genesis in the network
division of Microsoft and was designed by Gordon Letwin, the chief architect of the OS/2
operating system. The HPFS has been designed to meet the demands of increasingly
powerful PCs, fixed disks, and netwarks for many years to come and to serve as a
suitable platform for object-oriented languages, applications, and user interfaces.

The HPFS is a.complex topic because it incorporates three distinct yet interrelated file
system issues. First, the HPFS is a-way of organizing data on a random access block
storage device. Second, it is a software module that translates fi le-oriented requests
from an application program into more primitive requests that a device driver can
understand, using a variety of creative techniques to maximize performance. Third, the
HPFS is a practical illustration of an important new 0S5/2 feature known as instaflable file
sysiems.

This article introduces the three aspects of the HPFS. But first, it puts the HPFS in
perspective by reviewing some of the problems that led to the system's existence.

FAT File System

The so-called FAT file system, which is the file system used in all versions of the MS-
DOS™ operating system to date and in the first two releases of 0S/2' (Versions 1.0 and
1.1), has a dual heritage in Microsoft's earliest programming language products and the
Digital Research(R) CP/M(R) operating system-software originally written for 8080-based
and Z-80-based microcomputers. It inherited characteristics from both ancestors that

by copyright iaw (Title 17 U 8. Code)

C. HAMMER

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 51 of 59

424

have progressively tumed into handicaps in this new era of multitasking, protected mode,
virtual memory, and huge fixed disks.

The FAT file system revolves around the File Allocation Table for which itis named. Each
logical volume has its own FAT, which serves two important functions: it contains the
allocation information for each file on the volume in the form of linked lists of allocation
units (clusters, which are power-of-2 muitiples of sectors) and it indicates which allocation
units are free for assignment to a file that is being created or extended.

The FAT was invented by Bill Gates and Marc McDonald in1977 as a method of
managing disk space in the NCR version of standalone Microsoft* Disk BASIC. Tim
Paterson, at that time an employee of Seattle (R} Computer Products (SCP), was
introduced to the FAT concept when his company shared a booth with Microsoft at the
National Computer Conference in 1979. Paterson subsequently incorporated FATs into
the file system of 86-DOS, an operating system for SCP's S-100 bus 8086 CPU boards.
86-DOS was eventually purchased by Microsoft and became the starting point for MS-
DOS2 Version 1.0, which was released for the original IBM" PC in August 1981.

When the FAT was conceived, it was an excellent solution to disk management, mainly
because the floppy disks on which it was used were rarely larger than | Mb. On such di s,
the FAT was smail enough to be held in memory at all times, allowing very fast random
access to any part of any file. This proved far superior to the CP/M method of tracking
disk space, in which the information about the sectors assigned to a file might be spread
across many directory entries, which were in tum scattered randomly throughout the disk
directory.

When applied to fixed disks, however, the FAT began to look more like a bug than a
feature. It became too large to be held entirely resident and had to be paged into memory
in pieces; this paging resulted in many superfluous disk head movements as a program
was reading through a file and degraded system throughput. In addition, because the
information about free disk space was dispersed across many sectors of FAT, it was
impractical to allocate file space contiguously, and file fragmentation became another

- obstacle to good performance. Moreover, the use of relatively large clusters on fixed

disks resulted in a lot of dead space, since an average of one-half cluster was wasted for
each file. (Some network servers use clusters as large as 64Kb.)

The FAT file system's restrictions on naming files and directories are inherited from
CP/M. When Paterson was writing 86DOS, one of his primary objectives was to make
programs easy to port from CP/M to his new operating system. He therefore adopted
CP/M's limits on filenames and extensions so the critical fields of 86-DOS File Control
Blocks (FCBs) would look almost exactly like those of CP/M. The sizes of the FCB
filename and extension fields were also propagated into the structure of disk directory
entries. In due time, 86-DOS became MSDOS and application programs for MS-DOS
proliferated beyond anyone's wildest dreams. Since most of the early programs
depended on the structure of FCBs, the 8.3 format for filenames became irrevocably
{ocked into the system.

During the last couple of years, Microsoft and IBM have made valiant attempts to prolong
the useful life of the FAT file system by lifting the restrictions on volume sizes, improving
allocation strategies, caching pathnames, and moving tables and buffers into expanded
memory. But these can only be regarded as temporizing measures, because the
fundamental data structures used by the FAT file system are simply not well suited to
large random access devices.

The HPFS solves the FAT file system problems mentioned here and many others, butit
is not derived in any way from the FAT file system. The architect of the HPFS started with
a clean sheet of paper and designed a file system that can take full advantage of a
muttitasking environment, and that will be able to cope with any sort of disk device likely
to arrive on microcomputers during the next decade.

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 52 of 59

425

HPFS Volume Structure

HPFS volumes are a new partition type-type 7-and can exist on a fixed disk alongside of
the several previously defined FAT partition types. IBM-compatible HPFS volumes use a
sector size of 512 bytes and have a maximum size of 2199Gb (2" sectors). Although
there is no particular reason why floppy disks can't be formatted as HPFS volumes,
Microsoft plans to stick with FAT file systems on floppy disks for the foreseeable future.
{This ensures that users will be able to transport files easily between MS-DOS and OS/2
systems,)

An HPFS volume has very few fixed structures (Figure 1). Sectors 0-15 of a volume
(8Kb) are the BootBlock and contain a volume name, 32-bit volume ID, and a disk
bootstrap program. The bootstrap is relatively sophisticated (by MS-DOS standards) and
can use the HPFS in a restricted mode to locate and read the operating system files
wherever they might be found. '

Sectors 16 and 17 are known as the SuperBlock and the SpareBlock respectively. The
SuperBlock is only modified by disk maintenance utilities. It contains pointers to the free
space bitmaps, the bad block list, the directory block band, and the root directoty. It also
cantains the date that the volume was last checked out and repaired with CHKDSK/F.
The SpareBlock contains various flags and pointers that will be discussed later; it is
modified, although infrequently, as the system executes.

The remainder of the disk is divided into 8Mb bands. Each band has its own free space
bitmap in which a bit represents each sector. A bit is 0 if the sector is in use and I if the
sector is available. The bitmaps are located at the head or tail of a band so that two
bitmaps are adjacent between alternate bands. This allows the maximum contiguous free
space that can be allocated to a file to be 16Mb. One band, located at or toward the seek
center of the disk, is called the directory block band and receives special treatment (more
about this later). Note that the band size is a characteristic of the current implementation
and may be changed in later versions of the file system.

Files and Fnodes

Every file or directory on an HPFS volume is anchored on a fundamental file system
object called an Fnode (pronounced “eff node"). Each Fnode occupies a single sector
and contains control and access history information used intemally by the file system,
extended attributes and access control lists (more about this later), the length and the
first 15 characters of the name of the associated file or directory, and an allocation
structure (Figure 2). An Fnode is always stored near the file or directory that it
represents,

The allocation structure in the Fnode can take several forms, depending on the size and
degree of conliguity of the file or directory. The HPFS views a file as a collection of one
or more runs or extents of one or more contiguous sectors. Each run is symbolized by a
pair of doublewords-a 32-bit starting sector number and a 32-bit length in sectors (this is
referred to as runlength encoding). From an application program’s peoint of view, the
extents are invisible; the file appears as a seamless stream of bytes.

The space reserved for allocation information in an Fnode can hold pointers to as many
as eight runs of sectors of up to 16Mb each. (This maximum run size is a result of the
band size and free space bitmap placement only; it is not an inherent fimitation of the file
system.) Reasonably small files or highly contiguous files can therefore be described
completely within the Fnode (Figure 3).

HPFS uses a new method to represent the location of files that are too large or foo
fragmented for the Fnode and consist of more than eight runs. The Fnode's allocation
structure becomes the root for a B+ Tree of allocation sectors, which in tum contain the
actual pointers to the file's sector runs (see Figure 4 and the sidebar, "BTrees and B+

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 53 of 59

426

Trees"). The Fnode's root has room for 12 elements. Each allocation sector can contain,
in addition to various control information, as many as 40 pointers to secior runs.
Therefore, a two-level allocation B+ Tree can describe a file of 480 (12*40) sector runs
with a theoretical maximum size of 7.68Gb (12*40*16Mb) in the current implementation
(although the 32-bit signed offset parameter for DosChgFilePtr effectively limits file sizes
to 2Gb).

in the unlikely event that a two-level B+ Tree is not sufficient to describe a highly
fragmented file, the file system will introduce additional levels in the tree as needed.
Allocation sectors in the intermediate levels can hold as many as 60 intemal
{nonterminal) B+ Tree nodes, which means that the descriptive ability of this structure
rapidly grows to numbers that are nearly beyond comprehension. For example, a
threelevel allocation B+ Tree can describe a file with as many as 28,800 (1260*40)
sector runs.

Run-length encoding and B+ Trees of allocation sectors are a memory-efficient way to
specify a file's size and location, but they have other significant advantages. Translating a
logical file offset into a sector number is extremely fast: the file system just needs to
traverse the list {or B+ Tree of iists) of run pointers until it finds the correct range. It can
then identify the sector within the run with a simple calculation. Run-length encoding also
makes it trivial to extend the file logically if the newly assigned sector is contiguous with
the file's previous last sector; the file system merely needs to increment the size
doubleword of the file's last run pointer and clear the sector’s bit in the appropriate
freespace bitmap.

Directories

Directories, like files, are anchored on Fnodes. A pointe to the Fnode for the root
directory is found in the SuperBlock. The Fnodes for directories other than the root are
reache through subdirectory entries in their parent directories.

Directories can grow to any size and are built up from 2Kb directory blocks, which are
allocated as four consecutive sectors on the disk. The file system attempts to allocate
directory blocks in the directory band, which is located at or near the seek center of the
disk. Once the directory band is full, the directory blocks are allocated wherever space is
available. '

Each 2Kb directory block contains from one to many directory entries. A directory entry
contains several fields, including time and date stamps, an Fnode pointer, a usage count
for use by disk maintenance programs, the length of the file or directory name, the name
itself, and a B-Tree pointer. Each eniry begins with a word that contains the length of the
entry. This provides for a variable amount of flex space at the end of each entry, which
can be used by special versions of the file system and allows the directory block to be
traversed very quickly {Figure 5).

The nuniber of entries in a directory block varies with the length of names. If the average
filename length is 1 3 characters, an average directory block will hold about 40 entries.
The entries in a directory block are sorted by the binary lexical order of their name fields
{this happens to put them in alphabetical order for the U.S. alphabet). The last entry in a
directory block is a dummy record that marks the end of the block.

When a directory gets too large to be stored in one block, it increases in size by the
addition of 2Kb blocks that are organized as a B-Tree"B-Trees and B+ Trees™). When
searching for a specific name, the file system traverses a directory block until it either
finds a match or finds a name that is lexically greater than the target. In the latter case,
the file system extracts the BTree pointer from the entry. If there is no pointer, the search
failed; otherwise the file system follows the pointer to the next directory block in the tree
and continues the search.

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 54 of 59

A

A little back-of-the-envelope arithmetic yields some impressive statistics. Assuming 40

entries per block, a two-level tree of directory blocks can hold 1640 directory entries and

a three-level tree can hold an astonishing 65,640 entries. In other words, a particular file

can be found {or shown not to exist) in a typical directory of 65,640 files with a maximum

of three disk hits-the actual number of disk accesses depending on cache contents and

the location of the file’s name in the direciory block B-Tree. That's quite a contrast to the
. FAT file system, where in the worst case more than 4000 sectors would have to be read
' to establish that a file was or was not present in a directory containing the same number
. offiles.

The B-Tree directory structure has interesting implications beyond its effect on open and
find operations. A file creation, renaming, or deletion may result in a cascade of complex
operations, as directory blocks are added or freed or names are moved from one block to
the other to keep the tree balanced. In fact, a rename operation could theoretically fail for
lack of disk space even though the file itself is not growing. In order to avoid this sort of
disaster, the HPFS maintains a small pool of free blacks that can be drawn from in a
directory emergency; a pointer to this pool of free blocks is stored in the SpareBlock.

Extended Attributes

File attributes are information about a file that is maintained by the operating system
outside the file's overt storage area. The FAT file system supports only a few simple
attributes (read only, system, hidden, and archive) that are actually stored as bit flags in
the file's directory entry; these attributes are inspected er modified by special function
calls and are not accessible through the normal file open, read, and write callls.

The HPFS supports the same attributes as the FAT file system for historical reasons, but
it also supparts a new form of fileassociated, highly generalized information calied

- Extended Atiributes (EAs). Each EA is conceptually similar to an environment variable,

taking the form
name- -value

except that the value portion can be either a null-terminated (ASCIIZ) string or binary
data. In 0S/2 1.2, each file or directory can‘have a maximum of 64Kb of EAs attached to
it. This limit may be lifted in a later release of OS/2.

The storage method for EAs can vary. If the EAs associated with a given file or directory
are small enough, they will be stored right in the Fnode. If the total size of the EAs is too
large, they are stored outside the Fnode in sector runs, and a B+ Tree of allocation
sectors can be created to describe the runs. If a single EA gets too large, it can be
pushed outside the Fnode into a B+ Tree of its own.

i The kernel API functions DosQFilelnfo and DosSetFilelnfo have been expanded with

" new information levels that allow application programs to manipulate extended atiributes
for files. The new functions DosQPathinfo and DosSetPathinfo are used to read or write
the EAs associated with arbitrary pathnames. An application program can either ask for
the value of a specific EA (supplying a name to be maiched) or can obtain all of the EAs
for the file or directory at once.

Although application programs can begin to take advantage of EAs as soon as the HPFS
is released, support for EAs is an essential component in Microsoft's long-range plans for
object-oriented file systems, Information of almost any type can be stored in EAs, ranging
from the name of the application that owns the file to names of dependent files to icons to
executable code. As the HPFS evoives, its facilities for manipulating EAs are likely {o
become much more sophisticated. It's easy to imagine, for example, that in future
versions the APl might be extended with EA functions that are analogous to DosFindFirst
and DosFindNext and EA data might get organized into B -Trees.

N
N
~

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 55 of 59

I should note here that in addition to EAs, the LAN Manager version of HPFS will support
another class of file-associated information called Access Control Lists (ACLs). ACLs
have the same general appearance as EAs and are maniputated in a similar manner, but
they are used to store access rights, passwords, and other information of interest in a
networking multiuser environment.

Installable File Systems

Support for instaliable file system has been one of the most eagerly anticipated features
of OS/2 Version 1.2. It will make it possible to access muitiple incompatible volume
structures-FAT, HPFS, CD ROM, and perhaps even UNIX(R)-on the same OS/2 system
at the same time, will simplify the ¥ife of network implementors, and will open the door to
rapid file system evolution and innovation. Installable file systems are, however, only
relevant to the HPFS insofar as they make use of the HPFS optional. The FAT file
system is still embedded in the OS/2 kemel, as it was in 0S/2 1.0 and 1.1, and will
remain there as the compatibility file system for some time to come.

An installable file system driver (FSD) is analogous in many ways to a device driver. An
FSD resides on the disk in a file that is structured like a dynamic-link library (DLL),
typically with a SYS or IFS extension, and is loaded during system initialization by IFS=
statements in the CONFIG.SYS file. IFS= directives are processed in the order they are
encountered and are also sensitive to the order of DEVICE= statements for device
drivers. This lets you load a device driver for a nonstandard device, load a file system
driver from a volume on that device, and so on.

Once an FSD is instalied and initiafized, the kemel communicates with it in terms of
logical requests for file opens, reads, writes, seeks, closes, and so on. The FSD
translates these requests-using control structures and tables found on the volume itself-

. into requests for sector reads and writes for which it can call special kemel entry points
= called File System Helpers (FsHips). The kemel passes the demands for sector 1/0 to the
appropriate device driver and retums the results to the FSD (Figure 6).

The procedure used by the operating system to associate volumes with FSDs is cailed
dynamic mounting and works as follows. Whenever a volume is first accessed, or after it
has been locked for direct access and then.unlocked (for example, by a FORMAT
operation), OS/2 presents identifying information from the volume fo each of the FSDs in
tum until one of them recognizes the information. When an FSD claims the volume, the
volume is mounted and all subsequent file 1/0 requests for the volume are routed to that
FSD. :

Performance Issues
The HPFS attacks potential bottienecks in disk throughput at multiple levels. It uses

advanced data structures, contiguous sector allocation, intelligent caching, read-ahead,
and deferred writes in order to boost performance.

First, the HPFS matches its data structures fo the task at hand: sophisticated data -
structures (B-Trees and B+ Trees) for fast random access to filenames, directory names,
and lists of sectors allocated to files or directories, and simple compact data structures
{bitmaps) for locating chunks of free space of the appropriate size. The routines that
manipulate these data structures are written in assembly language and have been
painstakingly tuned, with special focus on the routines that search the freespace bitmaps
for pattems of set bits (unused sectors).

Next, the HPFS's main goal -its prime directive, if you will- is to assign consecutive
sectors to files whenever possible. The time required to move the disk's read/write head
from one track to another far outweighs the other possible delays, so the HPFS works
hard to avoid or minimize such head movements by allocating file space contiguously
and by keeping control structures such as Fnodes and freespace bitmaps near the things

428

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 56 of 59

429

they contral. Highly contiguous files also help the file system make fewer requests of the
disk driver for more sectors at a time, allow the disk driver to exploit the multisector
transfer capabilities of the disk controfler, and reduce the number of disk completion
interrupts that must be serviced.

Of course, trying to keep files from becoming fragmented in a multitasking system in
which many files are being updated concurrently is no easy chore. One strategy the
HPFS uses is o scatter newly created files across the disk-in separate bands, if possible-
so that the seclors allocated fo the files as they are extended will not be interleaved.
Another strategy is to preallocate approximately 4Kb of contiguous space fo the file each
time it must be extended and give back any excess when the file is closed.

If an application knows the ultimate size of a new file in advance, it can assist the file
system by specifying an initial file allocation when it creates the file. The system will then
search all the free space bitmaps to find a run of consecutive sec tors large enough to
hold the file. That failing, it will search for two runs that are half the size of the file, and so
on.

The HPFS relies on several different kinds of caching to minimize the number of physical
disk transfers it must request. Naturally, it caches sectors, as did the FAT file system. But
unlike the FAT file system, the HPFS can manage very large caches efficiently and
adjusts sector caching on a perhandle basis to the manner in which a file is used. The
HPFS also caches pathnames and directaries, transforming disk directory entries into an
even more compact and efficient inmemory representation.

Another technique that the HPFS uses to improve performance is to preread data it
believes the program is Yikely to need. For example, when a file is opened, the file system
will preread and cache the Fnode and the first few sectors of the file's contents. If the file
is an executable program or the history information in the file's Fnode shows that an open
operation has lypically been followed by an immediate sequential read of the entire file,
the file system will preread and cache much more of the file's contents. When a program
issues relatively small read requests, the file system always fetches data from the file in
2Kb chunks and caches the excess, allowing most read operations to be satisfied from
the cache.

Finally, the OS/2 operating system's support for multitasking makes it possible for the
HPFS to rely heavity on lazy writes (sometimes called deferred writes or write behind) to
improve performance. When a program requests a disk write, the data is placed in the
cache and the cache buffer is flagged as dirty (that is, inconsistent with the state of the
data on disk). When the disk becomes idle or the cache becomes saturated with dirty
buffers, the file system uses a captive thread from a daemon process to write the buffers
to disk, starting with the oldest data.

In general, lazy writes mean that programs run faster because their read requests will
almost never be stalled waiting for a write request to complete. For programs that
repeatedly read, modify, and write a small working set of records, it also means that
many unnecessary or redundant physical disk writes may be avoided. Lazy writes have
their dangers, of course, $0 a program can defeat them on a per-handie basis by setting
the writethrough flag in the OpenMode parameter for DosOpen, or it can commit data to
disk on a perhandle basis with the DosBufReset function.

fault Tolerance

The HPFS's extensive use of lazy writes makes it imperative for the HPFS to be able to
recover gracefully from write errors under any but the most dire circumstances. After all,
by the time a write is known to have failed, the application has long since gone on its way
under the illusion that it has safely shipped the data into disk storage. The errors may be
detected by the hardware (such as a "sector not found" error returned by the disk
adapter), or they may be detected by the disk driver in spite of the hardware during a

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 57 of 59

430

read-afier-write verification of the data.

The primary mechanism for handling write errors is called a hotfix. When an error is
detected, the file system takes a free block out of a reserved hotfix pool, writes the data
to that block, and updates the hotfix map. (The hotfix map is simply a series of pairs of
doublewords, with each pair containing the number of a bad sector assoclated with the
number of its hotfix replacement. A pointer to the hotfix map is maintained in the
SpareBlock.) A copy of the hotfix map is t written to disk, and a waming message is
displayed fo let the user know that all is not well with the disk device.

Each time the file system requests a sector read or write from the disk driver, it scans the
hotfix map and replaces any bad sector numbers with the corresponding good sector
holding the actual data. This lookaside translation of sector numbers is not as expensive
as it sounds, since the hotfix list need only be scanned when a sector is physically read
or written, not each time it is accessed in the cache.

One of CHKDSK’s duties is to empty the hoftfix map. For each replacement block on the
hotfix map, it allccates a new sector that is in a favorable location for the file that owns
the data, moves the data from the hotfix block to the newly allocated sector, and updates
the file's allocation information (which may involve rebalancing allocation trees and other
elaborate operations). It then adds the bad sector to the bad block list, releases the
replacement sector back to the hotfix pool, deletes the hotfix entry from the hotfix map,
and writes the updated hotfix map to disk. '

Of course, write errors that can be detected and fixed on the fly are not the only calamity
that can befall a file system. The HPFS designers also had to consider the inevitable
damage to be wreaked by power failures, program crashes, malicious viruses and Trojan
harses, and those users who tumn off the machine without selecting Shutdown in the
Presentation Manager Shell. (Shutdown notifies the file system to flush the disk cache,
update directories, and do whatever else is necessary fo bring the disk to a consistent
state.)

The HPFS defends itself against the user who is too abrupt with the Big Red Switch by
maintaining a Dirty FS flag in the SpareBlock of each HPFS volume. The flag is only
cleared when all files on the volume have been closed and all dirty buffers in the cache
have been written out or, in the case of the boot volume (since OS2.INI and the swap file
are never closed), when Shutdown has been selected and has completed its work.

During the OS/2 boot sequence, the file system inspects the DirtyFS flag on each HPFS
volume and, if the flag is set, will not allow further access to that volume until CHKDSK
has been run. If the DirtyFS flag is set on the boot volume, the system will refuse to boot;
the user must boot 0S/2 in maintenance mode from a diskette and run CHKDSK to
check and possibly repair the boot volume.

In the event of a truly major catastrophe, such as loss of the SuperBlock or the root
directory, the HPFS is designed to give data recovery the best possible chance of
success. Every type of crucial file object-including Fnodes, aflocation sectors, and
directory blocks-is doubly linked to both its parent and its children and contains a unique
32-bit signature. Fnodes also contain the initial portion of the name of their file or
directory. Consequently, CHKDSK can rebuiid an entire volume by methodically scanning
the disk for Fnodes, allocation sectors, and directory blocks, using them to reconstruct
the files and directories and finally regenerating the freespace bitmaps.

Appiication Programs and the HPFS

Each of the OS/2 releases thus far have carvied with them a major discontinuity for
application programmers who leamed their tfrade in the MS-DOS environment. In OS/2
1.0, such programmers were faced for the first time with virtual memory, multitasking,
interprocess communications, and the protected mode restrictions on addressing and

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 58 of 59

direct control of the hardware and were challenged to master powerful new concepts
such as threading and dynamic linking. In OS/2 Version 1.1, the stakes were raised even
further. Programmers were offered a powerful hardware-independent graphical user
interface but had to restructure their applications drastically for an event-driven
environment based on objects and message passing.

In OS/2 Version 1.2, it is time for many of the file-oriented programming habits and
assumptlions carmied forward from the MS-DOS environment to fall by the wayside. An
application that wishes to take full advantage of the HPFS must allow for long, free-form,
mixed-case filenames and paths with few restrictions on punctuation and must be
sensitive to the presence of EAs and ACLs. After all, if EAs are to be of any use, it won't
suffice for applications to update a file by renaming the old file and creating a new one
without also copying the EAs.

But the necessary changes for 0S/2 Version 1.2 are not tricky to make. A new APi
function, DosCopy, helps applications create backups-it essentially duplicates an existing
file together with its EAs. EAs can also be manipulated explicitly with DosQFilelnfo,
DosSetFileinfo, DosQPathinfo, and DosSetPathinfo. A program should call DosQSysinfo
at run time to find the maximum possible path length for the system, and ensure that all
buffers used by DosChDir, DosQCurDir, and related functions are sufficiently large.
Similarly, the buffers used by DosOpen, DosMove, DosGetModName,
DosFindFirst, DosFindNext, and like functions must allow for longer filenames. Any logic
that folds cases in filenames or tests for the occurrence of only one dot delimiter in a
filename must be rethought or eliminated

The other changes in the APl will not affect the average application. The functions
DosQFilelnfo, DosFindFirst, and DosFindNext now retum all three sets of times and

7 dates (created, last accessed, last modified) for a file on an HPFS volume, but few
- programs are concemed with time and date stamps anyway. DosQFsinfo is used to
obtain volume labels or disk characteristics just as before, and the use of DosSetFsinfo
for volume labels is unchanged. There are a few totally new AP functions such as
DosFsCitl (analogous to DosDev IOCH but used for communication between an
application and an FSD), DosFsAttach (a sort of explicit mount call), and DosQFsAttach
(determines which FSD owns a volume); these are intended mainly for use by disk utility
programs. -

In order to prevent oid OS/2 applications and MS-DOS applications running in the DOS
box from inadvertently damaging HPDS files, a new flag bit has been defined in the EXE
file header that indicates whether an application is HPFS-aware. If this bil is not set, the
application will only be able to search for, open, or create files on HPFS volumes that are
compatible with the FAT file system's 8.3 naming conventions. If the bit is set, 0S/2
allows access to all files on an HPFS volume, because it assumes that the program
knows how to handle long, free-form filenames and will take the responsibility of
conserving a file's EAs and ACLs.

Summary

The HPFS solves all of the historical problems of the FAT file system .It achieves
excelient throughput even in extreme cases-many very small files or a few very large
files-by means of advanced data structures and techniques such as intelligent caching,
read-ahead, and write-behind. Disk space is used economically because it is managed
on a sector basis. Existing application programs will need madification fo take advantage
of the HPFS's support for extended atiributes and long filenames, but these changes will
not be difficult. All application programs will benefit from the HPFS's improved
performance and decreased CPU use whether they are medified or not. This article is
based on a prerelease version of the HPFS that was still undergoing modification and
tuning. therefore, the final release of the HPFS may differ in some details from the
description given here—Ed.

431

Case 2:05-cv-01719-TSZ Document 14-10 Filed 03/15/07 Page 59 of 59

432

SRR
B- Trees and B+ Trees

Most programimers are at least passingly familiar with the data structure known as a
binary tree. Binary trees are a technique for imposing a logical ordering on a collection of
data items by means of pointers, without regard to the physical order of the data.

in a simple binary tree, each node contains some data, including a key value that
determines the node's logical position in the tree, as well as pointers to the node's left
and right subtrees. The node that begins the tree is known as the root; the nodes that sit
at the ends of the tree's branches are sometimes called the leaves.

To find a particular piece of data, the binary tree is traversed from the root, At each node,
the desired key is compared with the node's key; if they don't match, one branch of the
node's subtree or another is selected based on whether the desired key is less than or
greater than the node's key. This process continues until a match is found or an empty
subtree is encountered (see Figure A).

Such simple binary trees, although easy to understand and implement, have
disadvantages in practice. If keys are not well distributed or are added to the tree ina
non-random fashion, the tree can become quite asymmetric, leading to wide variations in
tree traversal times.

In order to make access times uniform, many programmers prefer a particular type of
balanced tree known as a B-Tree. For the purposes of this discussion, the important
points about a B-Tree are that data is stored in all nodes, more than one data item might
be stored in a node, and all of the branches of the tree are of identical length (see Figure
B).

The worst-case behavior of a B-Tree is predictable and much better than that of a simple
binary tree, but the maintenance of a B-Tree is comespondingly more complex. Adding a
new data item, changing a key value, or deleting a data item may result in the splitting or
merging of a node, which in'tum forces a cascade of other operations on the tree to
rebalance it.

A B+ Tree is a specialized form of B-Tree that has two types of nodes: internat which only
point to other nodes, and external, which contain the actual data (see Figure C).

The advantage of a B+ Tree over a B- Tree is that the internal nodes of the B+ Tree can
hold many more decision values than the intermediate-level nodes of a B-Tree, so the
fan out of the tree is faster and the average length of a branch is shorler. This makes up
for the fact that you must always follow a B+ Tree branch to its end to get the data for
which you are looking, whereas in a B-Tree you may discover the data at an intermediate
node or even at the root.

Source Citatlon:Duncan, Roy. "Deslgn goals and implementation of the new High Performance File
System. (includes related article on B-Trees and B+ Trees).” Microsoft Systems Journal 4.n5 {Sept
1989): 1{13). Expanded Academic ASAP. Thomseon Gale. University of Washington. 9 Jan. 2007
<http://find.galegroup.com/itx/infomark.do?&contentSet=IAC-Documents&type=retrieve&tabID=T003
&prodld =EAIM&docld=A75854548source=galedsrcprod=EAIMBuserGroupName=wash_eal
&version=1.0>,

Thomson Gale Document Number:A7585454

© 2005 Thomson Gale, a part of The Thomson Corporation.

